Fangjun Kuang 70e302cf2b
First attempt to add WEB client to the streaming emformer. (#351)
* Begin to add web client for streaming recognition.

* First attempt to add WEB interface for emformer model.

* Minor fixes.

* Begin to add recorder.

* Support recognition from real-time recordings.
2022-05-24 17:16:00 +08:00

183 lines
5.3 KiB
Python
Executable File

#!/usr/bin/env python3
import asyncio
import logging
from pathlib import Path
import sentencepiece as spm
import torch
import websockets
from streaming_decode import StreamList, get_parser, process_features
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger
g_params = None
g_model = None
g_sp = None
def build_stream_list():
batch_size = 1 # will change it later
stream_list = StreamList(
batch_size=batch_size,
context_size=g_params.context_size,
decoding_method=g_params.decoding_method,
)
return stream_list
async def echo(websocket):
logging.info(f"connected: {websocket.remote_address}")
stream_list = build_stream_list()
# number of frames before subsampling
segment_length = g_model.encoder.segment_length
right_context_length = g_model.encoder.right_context_length
# We add 3 here since the subsampling method is using
# ((len - 1) // 2 - 1) // 2)
chunk_length = (segment_length + 3) + right_context_length
async for message in websocket:
if isinstance(message, bytes):
samples = torch.frombuffer(message, dtype=torch.int16)
samples = samples.to(torch.float32) / 32768
stream_list.accept_waveform(
audio_samples=[samples],
sampling_rate=g_params.sampling_rate,
)
while True:
features, active_streams = stream_list.build_batch(
chunk_length=chunk_length,
segment_length=segment_length,
)
if features is not None:
process_features(
model=g_model,
features=features,
streams=active_streams,
params=g_params,
sp=g_sp,
)
results = []
for stream in stream_list.streams:
text = g_sp.decode(stream.decoding_result())
results.append(text)
await websocket.send(results[0])
else:
break
elif isinstance(message, str):
stream_list[0].input_finished()
while True:
features, active_streams = stream_list.build_batch(
chunk_length=chunk_length,
segment_length=segment_length,
)
if features is not None:
process_features(
model=g_model,
features=features,
streams=active_streams,
params=g_params,
sp=g_sp,
)
else:
break
results = []
for stream in stream_list.streams:
text = g_sp.decode(stream.decoding_result())
results.append(text)
await websocket.send(results[0])
await websocket.close()
logging.info(f"Closed: {websocket.remote_address}")
async def loop():
logging.info("started")
async with websockets.serve(echo, "", 6008):
await asyncio.Future() # run forever
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
# Note: params.decoding_method is currently not used.
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
setup_logger(f"{params.res_dir}/log-streaming-decode")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
params.device = device
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.avg_last_n > 0:
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to(device)
model.eval()
model.device = device
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
global g_params, g_model, g_sp
g_params = params
g_model = model
g_sp = sp
asyncio.run(loop())
if __name__ == "__main__":
torch.manual_seed(20220506)
main()