mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
290 lines
13 KiB
Python
290 lines
13 KiB
Python
# Modified from https://github.com/QwenLM/Qwen2.5-Omni/blob/main/web_demo.py
|
||
import io
|
||
import os
|
||
import ffmpeg
|
||
|
||
import numpy as np
|
||
import gradio as gr
|
||
import soundfile as sf
|
||
|
||
#import modelscope_studio.components.base as ms
|
||
#import modelscope_studio.components.antd as antd
|
||
import gradio.processing_utils as processing_utils
|
||
|
||
#from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
|
||
from gradio_client import utils as client_utils
|
||
#from qwen_omni_utils import process_mm_info
|
||
from argparse import ArgumentParser
|
||
|
||
def _load_model_processor(args):
|
||
if args.cpu_only:
|
||
device_map = 'cpu'
|
||
else:
|
||
device_map = 'auto'
|
||
|
||
# Check if flash-attn2 flag is enabled and load model accordingly
|
||
if args.flash_attn2:
|
||
# model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path,
|
||
# torch_dtype='auto',
|
||
# attn_implementation='flash_attention_2',
|
||
# device_map=device_map)
|
||
# else:
|
||
# model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map, torch_dtype='auto')
|
||
|
||
# processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path)
|
||
return model, processor
|
||
|
||
def _launch_demo(args, model, processor):
|
||
# Voice settings
|
||
VOICE_LIST = ['Chelsie', 'Ethan']
|
||
DEFAULT_VOICE = 'Chelsie'
|
||
|
||
default_system_prompt = 'You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
|
||
|
||
language = args.ui_language
|
||
|
||
# def get_text(text: str, cn_text: str):
|
||
# if language == 'en':
|
||
# return text
|
||
# if language == 'zh':
|
||
# return cn_text
|
||
# return text
|
||
|
||
# def convert_webm_to_mp4(input_file, output_file):
|
||
# try:
|
||
# (
|
||
# ffmpeg
|
||
# .input(input_file)
|
||
# .output(output_file, acodec='aac', ar='16000', audio_bitrate='192k')
|
||
# .run(quiet=True, overwrite_output=True)
|
||
# )
|
||
# print(f"Conversion successful: {output_file}")
|
||
# except ffmpeg.Error as e:
|
||
# print("An error occurred during conversion.")
|
||
# print(e.stderr.decode('utf-8'))
|
||
|
||
def format_history(history: list, system_prompt: str):
|
||
messages = []
|
||
# messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
||
for item in history:
|
||
if isinstance(item["content"], str):
|
||
messages.append({"role": item['role'], "content": item['content']})
|
||
elif item["role"] == "user" and (isinstance(item["content"], list) or
|
||
isinstance(item["content"], tuple)):
|
||
file_path = item["content"][0]
|
||
|
||
mime_type = client_utils.get_mimetype(file_path)
|
||
if mime_type.startswith("image"):
|
||
messages.append({
|
||
"role":
|
||
item['role'],
|
||
"content": [{
|
||
"type": "image",
|
||
"image": file_path
|
||
}]
|
||
})
|
||
elif mime_type.startswith("video"):
|
||
messages.append({
|
||
"role":
|
||
item['role'],
|
||
"content": [{
|
||
"type": "video",
|
||
"video": file_path
|
||
}]
|
||
})
|
||
elif mime_type.startswith("audio"):
|
||
messages.append({
|
||
"role":
|
||
item['role'],
|
||
"content": [{
|
||
"type": "audio",
|
||
"audio": file_path,
|
||
}]
|
||
})
|
||
return messages
|
||
|
||
def predict(messages, voice=DEFAULT_VOICE):
|
||
print('predict history: ', messages)
|
||
|
||
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||
|
||
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
|
||
|
||
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True)
|
||
inputs = inputs.to(model.device).to(model.dtype)
|
||
|
||
text_ids, audio = model.generate(**inputs, speaker=voice, use_audio_in_video=True)
|
||
|
||
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
||
response = response[0].split("\n")[-1]
|
||
yield {"type": "text", "data": response}
|
||
|
||
audio = np.array(audio * 32767).astype(np.int16)
|
||
wav_io = io.BytesIO()
|
||
sf.write(wav_io, audio, samplerate=24000, format="WAV")
|
||
wav_io.seek(0)
|
||
wav_bytes = wav_io.getvalue()
|
||
audio_path = processing_utils.save_bytes_to_cache(
|
||
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
|
||
yield {"type": "audio", "data": audio_path}
|
||
|
||
def media_predict(audio, video, history, system_prompt, voice_choice):
|
||
# First yield
|
||
yield (
|
||
None, # microphone
|
||
None, # webcam
|
||
history, # media_chatbot
|
||
gr.update(visible=False), # submit_btn
|
||
gr.update(visible=True), # stop_btn
|
||
)
|
||
|
||
if video is not None:
|
||
convert_webm_to_mp4(video, video.replace('.webm', '.mp4'))
|
||
video = video.replace(".webm", ".mp4")
|
||
files = [audio, video]
|
||
|
||
for f in files:
|
||
if f:
|
||
history.append({"role": "user", "content": (f, )})
|
||
|
||
formatted_history = format_history(history=history,
|
||
system_prompt=system_prompt,)
|
||
|
||
|
||
history.append({"role": "assistant", "content": ""})
|
||
|
||
for chunk in predict(formatted_history, voice_choice):
|
||
if chunk["type"] == "text":
|
||
history[-1]["content"] = chunk["data"]
|
||
yield (
|
||
None, # microphone
|
||
None, # webcam
|
||
history, # media_chatbot
|
||
gr.update(visible=False), # submit_btn
|
||
gr.update(visible=True), # stop_btn
|
||
)
|
||
if chunk["type"] == "audio":
|
||
history.append({
|
||
"role": "assistant",
|
||
"content": gr.Audio(chunk["data"])
|
||
})
|
||
|
||
# Final yield
|
||
yield (
|
||
None, # microphone
|
||
None, # webcam
|
||
history, # media_chatbot
|
||
gr.update(visible=True), # submit_btn
|
||
gr.update(visible=False), # stop_btn
|
||
)
|
||
|
||
with gr.Blocks() as demo, ms.Application(), antd.ConfigProvider():
|
||
with gr.Sidebar(open=False):
|
||
system_prompt_textbox = gr.Textbox(label="System Prompt",
|
||
value=default_system_prompt)
|
||
with antd.Flex(gap="small", justify="center", align="center"):
|
||
with antd.Flex(vertical=True, gap="small", align="center"):
|
||
antd.Typography.Title("Qwen2.5-Omni Demo",
|
||
level=1,
|
||
elem_style=dict(margin=0, fontSize=28))
|
||
with antd.Flex(vertical=True, gap="small"):
|
||
antd.Typography.Text(get_text("🎯 Instructions for use:",
|
||
"🎯 使用说明:"),
|
||
strong=True)
|
||
antd.Typography.Text(
|
||
get_text(
|
||
"1️⃣ Click the Audio Record button or the Camera Record button.",
|
||
"1️⃣ 点击音频录制按钮,或摄像头-录制按钮"))
|
||
antd.Typography.Text(
|
||
get_text("2️⃣ Input audio or video.", "2️⃣ 输入音频或者视频"))
|
||
antd.Typography.Text(
|
||
get_text(
|
||
"3️⃣ Click the submit button and wait for the model's response.",
|
||
"3️⃣ 点击提交并等待模型的回答"))
|
||
voice_choice = gr.Dropdown(label="Voice Choice",
|
||
choices=VOICE_LIST,
|
||
value=DEFAULT_VOICE)
|
||
with gr.Tabs():
|
||
with gr.Tab("Online"):
|
||
with gr.Row():
|
||
with gr.Column(scale=1):
|
||
microphone = gr.Audio(sources=['microphone'],
|
||
type="filepath")
|
||
webcam = gr.Video(sources=['webcam'],
|
||
height=400,
|
||
include_audio=True)
|
||
submit_btn = gr.Button(get_text("Submit", "提交"),
|
||
variant="primary")
|
||
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
|
||
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
|
||
with gr.Column(scale=2):
|
||
media_chatbot = gr.Chatbot(height=650, type="messages")
|
||
|
||
def clear_history():
|
||
return [], gr.update(value=None), gr.update(value=None)
|
||
|
||
submit_event = submit_btn.click(fn=media_predict,
|
||
inputs=[
|
||
microphone, webcam,
|
||
media_chatbot,
|
||
system_prompt_textbox,
|
||
voice_choice
|
||
],
|
||
outputs=[
|
||
microphone, webcam,
|
||
media_chatbot, submit_btn,
|
||
stop_btn
|
||
])
|
||
stop_btn.click(
|
||
fn=lambda:
|
||
(gr.update(visible=True), gr.update(visible=False)),
|
||
inputs=None,
|
||
outputs=[submit_btn, stop_btn],
|
||
cancels=[submit_event],
|
||
queue=False)
|
||
clear_btn.click(fn=clear_history,
|
||
inputs=None,
|
||
outputs=[media_chatbot, microphone, webcam])
|
||
|
||
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
|
||
ssr_mode=False,
|
||
share=args.share,
|
||
inbrowser=args.inbrowser,
|
||
server_port=args.server_port,
|
||
server_name=args.server_name,)
|
||
|
||
|
||
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-Omni-7B"
|
||
def _get_args():
|
||
parser = ArgumentParser()
|
||
|
||
parser.add_argument('-c',
|
||
'--checkpoint-path',
|
||
type=str,
|
||
default=DEFAULT_CKPT_PATH,
|
||
help='Checkpoint name or path, default to %(default)r')
|
||
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
|
||
|
||
parser.add_argument('--flash-attn2',
|
||
action='store_true',
|
||
default=False,
|
||
help='Enable flash_attention_2 when loading the model.')
|
||
parser.add_argument('--share',
|
||
action='store_true',
|
||
default=False,
|
||
help='Create a publicly shareable link for the interface.')
|
||
parser.add_argument('--inbrowser',
|
||
action='store_true',
|
||
default=False,
|
||
help='Automatically launch the interface in a new tab on the default browser.')
|
||
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
|
||
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
|
||
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
|
||
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
if __name__ == "__main__":
|
||
args = _get_args()
|
||
model, processor = _load_model_processor(args)
|
||
_launch_demo(args, model, processor) |