2025-04-25 05:36:18 +00:00

110 lines
3.8 KiB
Bash

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
export PYTHONPATH=$PYTHONPATH:/workspace/slam/icefall_omni
set -eou pipefail
stage=$1
stop_stage=$2
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "stage 0: "
pip uninstall lhotse
cd /workspace/slam/lhotse
git config --global --add safe.directory /workspace/slam/lhotse
pip install -e '.[dev]'
cd -
pip install -r slam_omni/requirements.txt
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "stage 1: Download whisper-large-v2 multi-hans-zh fbank feature from huggingface"
python3 local/compute_whisper_fbank.py
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Combine features"
manifest_dir=data/fbank
if [ ! -f $manifest_dir/cuts_belle_00001-01600.jsonl.gz ]; then
pieces=$(find $manifest_dir -name "cuts_belle.*.jsonl.gz" | sort)
# # remove cust_belle_00000.jsonl.gz from pieces
# pieces=$(echo $pieces | sed 's/cuts_belle.00000.jsonl.gz//g')
echo $pieces | wc
lhotse combine $pieces data/fbank/cuts_belle_00001-01600.jsonl.gz
cd $manifest_dir && ln -s cuts_belle_00001-01600.jsonl.gz cuts_belle_train.jsonl.gz && cd -
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "stage 3: "
exp_dir=./slam_omni/exp_speech2speech_rerun
python3 ./slam_omni/decode.py \
--max-duration 1 \
--exp-dir $exp_dir \
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
--epoch 997 --avg 1 \
--manifest-dir data/fbank \
--use-flash-attn True \
--method small_test_speech2speech_rerun \
--enable-speech-output True \
--use-lora True # --on-the-fly-feats True
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "stage 4: "
ngpu=8
torchrun --nproc_per_node $ngpu ./slam_omni/train.py \
--max-duration 80 \
--enable-musan False \
--exp-dir ./slam_omni/exp_speech2text \
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./slam_omni/ds_config_zero1.json \
--use-flash-attn True \
--pretrained-model-path slam_omni/exp_speech2text/epoch-1-checkpoint-5000.pt/pytorch_model.bin \
--sampler-state-dict-path slam_omni/exp_speech2text/epoch-1-checkpoint-5000-sampler.pt \
--use-lora True --unfreeze-llm True
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "stage 5: "
ngpu=8
exp_dir=./slam_omni/exp_speech2speech_rerun
# exp_dir_new=./slam_omni/exp_s2s
torchrun --nproc_per_node $ngpu ./slam_omni/train.py \
--max-duration 50 \
--enable-musan False \
--exp-dir $exp_dir \
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./slam_omni/ds_config_zero1.json \
--use-flash-attn True \
--pretrained-model-path $exp_dir/epoch-1-checkpoint-15000.pt/pytorch_model.bin \
--sampler-state-dict-path $exp_dir/epoch-1-checkpoint-15000-sampler.pt \
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
# --pretrained-model-path slam_omni/exp_speech2text/epoch-1-checkpoint-5000.pt/pytorch_model.bin \
# --sampler-state-dict-path $exp_dir/epoch-1-checkpoint-35000-sampler.pt \
fi