mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* Copy files for editing. * Use librispeech + gigaspeech with modified conformer. * Support specifying number of workers for on-the-fly feature extraction. * Feature extraction code for GigaSpeech. * Combine XL splits lazily during training. * Fix warnings in decoding. * Add decoding code for GigaSpeech. * Fix decoding the gigaspeech dataset. We have to use the decoder/joiner networks for the GigaSpeech dataset. * Disable speed perturbe for XL subset. * Compute the Nbest oracle WER for RNN-T decoding. * Minor fixes. * Minor fixes. * Add results. * Update results. * Update CI. * Update results. * Fix style issues. * Update results. * Fix style issues.
95 lines
3.1 KiB
Python
95 lines
3.1 KiB
Python
# Copyright 2021 Piotr Żelasko
|
|
# 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import glob
|
|
import logging
|
|
import re
|
|
from pathlib import Path
|
|
|
|
import lhotse
|
|
from lhotse import CutSet, load_manifest
|
|
|
|
|
|
class GigaSpeech:
|
|
def __init__(self, manifest_dir: str):
|
|
"""
|
|
Args:
|
|
manifest_dir:
|
|
It is expected to contain the following files::
|
|
|
|
- XL_split_2000/cuts_XL.*.jsonl.gz
|
|
- cuts_L_raw.jsonl.gz
|
|
- cuts_M_raw.jsonl.gz
|
|
- cuts_S_raw.jsonl.gz
|
|
- cuts_XS_raw.jsonl.gz
|
|
- cuts_DEV_raw.jsonl.gz
|
|
- cuts_TEST_raw.jsonl.gz
|
|
"""
|
|
self.manifest_dir = Path(manifest_dir)
|
|
|
|
def train_XL_cuts(self) -> CutSet:
|
|
logging.info("About to get train-XL cuts")
|
|
|
|
filenames = list(
|
|
glob.glob(f"{self.manifest_dir}/XL_split_2000/cuts_XL.*.jsonl.gz")
|
|
)
|
|
|
|
pattern = re.compile(r"cuts_XL.([0-9]+).jsonl.gz")
|
|
idx_filenames = [
|
|
(int(pattern.search(f).group(1)), f) for f in filenames
|
|
]
|
|
idx_filenames = sorted(idx_filenames, key=lambda x: x[0])
|
|
|
|
sorted_filenames = [f[1] for f in idx_filenames]
|
|
|
|
logging.info(f"Loading {len(sorted_filenames)} splits")
|
|
|
|
return lhotse.combine(
|
|
lhotse.load_manifest_lazy(p) for p in sorted_filenames
|
|
)
|
|
|
|
def train_L_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_L_raw.jsonl.gz"
|
|
logging.info(f"About to get train-L cuts from {f}")
|
|
return CutSet.from_jsonl_lazy(f)
|
|
|
|
def train_M_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_M_raw.jsonl.gz"
|
|
logging.info(f"About to get train-M cuts from {f}")
|
|
return CutSet.from_jsonl_lazy(f)
|
|
|
|
def train_S_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_S_raw.jsonl.gz"
|
|
logging.info(f"About to get train-S cuts from {f}")
|
|
return CutSet.from_jsonl_lazy(f)
|
|
|
|
def train_XS_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_XS_raw.jsonl.gz"
|
|
logging.info(f"About to get train-XS cuts from {f}")
|
|
return CutSet.from_jsonl_lazy(f)
|
|
|
|
def test_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_TEST.jsonl.gz"
|
|
logging.info(f"About to get TEST cuts from {f}")
|
|
return load_manifest(f)
|
|
|
|
def dev_cuts(self) -> CutSet:
|
|
f = self.manifest_dir / "cuts_DEV.jsonl.gz"
|
|
logging.info(f"About to get DEV cuts from {f}")
|
|
return load_manifest(f)
|