2023-08-15 09:03:23 +02:00

114 lines
3.1 KiB
Python

# Copyright 2022 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
import torch.nn as nn
from acoustic_model.utils_py.scaling_zipformer import Balancer, ScaledConv1d
class LConv(nn.Module):
"""A convolution module to prevent information loss."""
def __init__(
self,
channels: int,
kernel_size: int = 7,
bias: bool = True,
):
"""
Args:
channels:
Dimension of the input embedding, and of the lconv output.
"""
super().__init__()
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.deriv_balancer1 = Balancer(
2 * channels,
channel_dim=1,
min_abs=0.05,
max_abs=10.0,
min_positive=0.05,
max_positive=1.0,
)
self.depthwise_conv = nn.Conv1d(
2 * channels,
2 * channels,
kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=2 * channels,
bias=bias,
)
self.deriv_balancer2 = Balancer(
2 * channels,
channel_dim=1,
min_positive=0.05,
max_positive=1.0,
min_abs=0.05,
max_abs=20.0,
)
self.pointwise_conv2 = ScaledConv1d(
2 * channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
initial_scale=0.05,
)
def forward(
self,
x: torch.Tensor,
src_key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x: A 3-D tensor of shape (N, T, C).
Returns:
Return a tensor of shape (N, T, C).
"""
# exchange the temporal dimension and the feature dimension
x = x.permute(0, 2, 1) # (#batch, channels, time).
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
x = self.deriv_balancer1(x)
if src_key_padding_mask is not None:
x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
x = self.depthwise_conv(x)
x = self.deriv_balancer2(x)
x = self.pointwise_conv2(x) # (batch, channels, time)
return x.permute(0, 2, 1)