icefall/egs/librispeech/ASR/zipformer/frame_reducer.py
2023-08-17 09:32:23 +02:00

178 lines
5.8 KiB
Python

#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Yifan Yang,
# Zengwei Yao,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from icefall.utils import make_pad_mask
NON_BLANK_THRES = 0.9
class FrameReducer(nn.Module):
"""The encoder output is first used to calculate
the CTC posterior probability; then for each output frame,
if its blank posterior is bigger than some thresholds,
it will be simply discarded from the encoder output.
"""
def __init__(
self,
):
super().__init__()
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
ctc_output: torch.Tensor,
y_lens: Optional[torch.Tensor] = None,
blank_id: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
The shared encoder output with shape [N, T, C].
x_lens:
A tensor of shape (batch_size,) containing the number of frames in
`x` before padding.
ctc_output:
The CTC output with shape [N, T, vocab_size].
y_lens:
A tensor of shape (batch_size,) containing the number of frames in
`y` before padding.
blank_id:
The blank id of ctc_output.
Returns:
out:
The frame reduced encoder output with shape [N, T', C].
out_lens:
A tensor of shape (batch_size,) containing the number of frames in
`out` before padding.
"""
N, T, C = x.size()
padding_mask = make_pad_mask(x_lens)
non_blank_mask = (ctc_output[:, :, blank_id] < math.log(NON_BLANK_THRES)) * (
~padding_mask
)
if y_lens is not None or self.training is False:
# Limit the maximum number of reduced frames
if y_lens is not None:
limit_lens = T - y_lens
else:
# In eval mode, ensure audio that is completely silent does not make any errors
limit_lens = T - torch.ones_like(x_lens)
max_limit_len = limit_lens.max().int()
fake_limit_indexes = torch.topk(
ctc_output[:, :, blank_id], max_limit_len
).indices
_T = (
torch.arange(max_limit_len)
.expand_as(
fake_limit_indexes,
)
.to(device=x.device)
)
_T = torch.remainder(_T, limit_lens.unsqueeze(1))
limit_indexes = torch.gather(fake_limit_indexes, 1, _T)
limit_mask = (
torch.full_like(
non_blank_mask,
0,
device=x.device,
).scatter_(1, limit_indexes, 1)
== 1
)
non_blank_mask = non_blank_mask | ~limit_mask
out_lens = non_blank_mask.sum(dim=1)
max_len = out_lens.max()
pad_lens_list = (
torch.full_like(
out_lens,
max_len.item(),
device=x.device,
)
- out_lens
)
max_pad_len = int(pad_lens_list.max().item())
out = F.pad(x, (0, 0, 0, max_pad_len))
valid_pad_mask = ~make_pad_mask(pad_lens_list)
total_valid_mask = torch.concat([non_blank_mask, valid_pad_mask], dim=1)
out = out[total_valid_mask].reshape(N, -1, C)
return out, out_lens
if __name__ == "__main__":
import time
test_times = 10000
device = "cuda:0"
frame_reducer = FrameReducer()
# non zero case
x = torch.ones(15, 498, 384, dtype=torch.float32, device=device)
x_lens = torch.tensor([498] * 15, dtype=torch.int64, device=device)
y_lens = torch.tensor([150] * 15, dtype=torch.int64, device=device)
ctc_output = torch.log(
torch.randn(15, 498, 500, dtype=torch.float32, device=device),
)
avg_time = 0
for i in range(test_times):
torch.cuda.synchronize(device=x.device)
delta_time = time.time()
x_fr, x_lens_fr = frame_reducer(x, x_lens, ctc_output, y_lens)
torch.cuda.synchronize(device=x.device)
delta_time = time.time() - delta_time
avg_time += delta_time
print(x_fr.shape)
print(x_lens_fr)
print(avg_time / test_times)
# all zero case
x = torch.zeros(15, 498, 384, dtype=torch.float32, device=device)
x_lens = torch.tensor([498] * 15, dtype=torch.int64, device=device)
y_lens = torch.tensor([150] * 15, dtype=torch.int64, device=device)
ctc_output = torch.zeros(15, 498, 500, dtype=torch.float32, device=device)
avg_time = 0
for i in range(test_times):
torch.cuda.synchronize(device=x.device)
delta_time = time.time()
x_fr, x_lens_fr = frame_reducer(x, x_lens, ctc_output, y_lens)
torch.cuda.synchronize(device=x.device)
delta_time = time.time() - delta_time
avg_time += delta_time
print(x_fr.shape)
print(x_lens_fr)
print(avg_time / test_times)