mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
151 lines
5.2 KiB
Python
Executable File
151 lines
5.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
To run this file, do:
|
|
|
|
cd icefall/egs/librispeech/ASR
|
|
python ./pruned_transducer_stateless7_streaming/test_model.py
|
|
"""
|
|
|
|
import torch
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
from train import get_params, get_transducer_model
|
|
|
|
|
|
def test_model():
|
|
params = get_params()
|
|
params.vocab_size = 500
|
|
params.blank_id = 0
|
|
params.context_size = 2
|
|
params.num_encoder_layers = "2,4,3,2,4"
|
|
params.feedforward_dims = "1024,1024,2048,2048,1024"
|
|
params.nhead = "8,8,8,8,8"
|
|
params.encoder_dims = "384,384,384,384,384"
|
|
params.attention_dims = "192,192,192,192,192"
|
|
params.encoder_unmasked_dims = "256,256,256,256,256"
|
|
params.zipformer_downsampling_factors = "1,2,4,8,2"
|
|
params.cnn_module_kernels = "31,31,31,31,31"
|
|
params.decoder_dim = 512
|
|
params.joiner_dim = 512
|
|
params.num_left_chunks = 4
|
|
params.short_chunk_size = 50
|
|
params.decode_chunk_len = 32
|
|
model = get_transducer_model(params)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
print(f"Number of model parameters: {num_param}")
|
|
|
|
# Test jit script
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
# We won't use the forward() method of the model in C++, so just ignore
|
|
# it here.
|
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
# torch scriptabe.
|
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
print("Using torch.jit.script")
|
|
model = torch.jit.script(model)
|
|
|
|
|
|
def test_model_jit_trace():
|
|
params = get_params()
|
|
params.vocab_size = 500
|
|
params.blank_id = 0
|
|
params.context_size = 2
|
|
params.num_encoder_layers = "2,4,3,2,4"
|
|
params.feedforward_dims = "1024,1024,2048,2048,1024"
|
|
params.nhead = "8,8,8,8,8"
|
|
params.encoder_dims = "384,384,384,384,384"
|
|
params.attention_dims = "192,192,192,192,192"
|
|
params.encoder_unmasked_dims = "256,256,256,256,256"
|
|
params.zipformer_downsampling_factors = "1,2,4,8,2"
|
|
params.cnn_module_kernels = "31,31,31,31,31"
|
|
params.decoder_dim = 512
|
|
params.joiner_dim = 512
|
|
params.num_left_chunks = 4
|
|
params.short_chunk_size = 50
|
|
params.decode_chunk_len = 32
|
|
model = get_transducer_model(params)
|
|
model.eval()
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
print(f"Number of model parameters: {num_param}")
|
|
|
|
convert_scaled_to_non_scaled(model, inplace=True)
|
|
|
|
# Test encoder
|
|
def _test_encoder():
|
|
encoder = model.encoder
|
|
assert encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
|
encoder.decode_chunk_size,
|
|
params.decode_chunk_len,
|
|
)
|
|
T = params.decode_chunk_len + 7
|
|
|
|
x = torch.zeros(1, T, 80, dtype=torch.float32)
|
|
x_lens = torch.full((1,), T, dtype=torch.int32)
|
|
states = encoder.get_init_state(device=x.device)
|
|
encoder.__class__.forward = encoder.__class__.streaming_forward
|
|
traced_encoder = torch.jit.trace(encoder, (x, x_lens, states))
|
|
|
|
states1 = encoder.get_init_state(device=x.device)
|
|
states2 = traced_encoder.get_init_state(device=x.device)
|
|
for i in range(5):
|
|
x = torch.randn(1, T, 80, dtype=torch.float32)
|
|
x_lens = torch.full((1,), T, dtype=torch.int32)
|
|
y1, _, states1 = encoder.streaming_forward(x, x_lens, states1)
|
|
y2, _, states2 = traced_encoder(x, x_lens, states2)
|
|
assert torch.allclose(y1, y2, atol=1e-6), (i, (y1 - y2).abs().mean())
|
|
|
|
# Test decoder
|
|
def _test_decoder():
|
|
decoder = model.decoder
|
|
y = torch.zeros(10, decoder.context_size, dtype=torch.int64)
|
|
need_pad = torch.tensor([False])
|
|
|
|
traced_decoder = torch.jit.trace(decoder, (y, need_pad))
|
|
d1 = decoder(y, need_pad)
|
|
d2 = traced_decoder(y, need_pad)
|
|
assert torch.equal(d1, d2), (d1 - d2).abs().mean()
|
|
|
|
# Test joiner
|
|
def _test_joiner():
|
|
joiner = model.joiner
|
|
encoder_out_dim = joiner.encoder_proj.weight.shape[1]
|
|
decoder_out_dim = joiner.decoder_proj.weight.shape[1]
|
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
|
|
traced_joiner = torch.jit.trace(joiner, (encoder_out, decoder_out))
|
|
j1 = joiner(encoder_out, decoder_out)
|
|
j2 = traced_joiner(encoder_out, decoder_out)
|
|
assert torch.equal(j1, j2), (j1 - j2).abs().mean()
|
|
|
|
_test_encoder()
|
|
_test_decoder()
|
|
_test_joiner()
|
|
|
|
|
|
def main():
|
|
test_model()
|
|
test_model_jit_trace()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|