mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* merge upstream * initial commit for zipformer_ctc * remove unwanted changes * remove changes to other recipe * fix zipformer softlink * fix for JIT export * add missing file * fix symbolic links * update results * Update RESULTS.md Address comments from @csukuangfj --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
299 lines
10 KiB
Python
299 lines
10 KiB
Python
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from label_smoothing import LabelSmoothingLoss
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from transformer import PositionalEncoding, TransformerDecoderLayer
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
"""This class implements Transformer based decoder for an attention-based encoder-decoder
|
|
model.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers: int,
|
|
num_classes: int,
|
|
d_model: int = 256,
|
|
nhead: int = 4,
|
|
dim_feedforward: int = 2048,
|
|
dropout: float = 0.1,
|
|
normalize_before: bool = True,
|
|
):
|
|
"""
|
|
Args:
|
|
num_layers:
|
|
Number of layers.
|
|
num_classes:
|
|
Number of tokens of the modeling unit including blank.
|
|
d_model:
|
|
Dimension of the input embedding, and of the decoder output.
|
|
"""
|
|
super().__init__()
|
|
|
|
if num_layers > 0:
|
|
self.decoder_num_class = num_classes # bpe model already has sos/eos symbol
|
|
|
|
self.decoder_embed = nn.Embedding(
|
|
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
|
)
|
|
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
|
|
|
decoder_layer = TransformerDecoderLayer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=dim_feedforward,
|
|
dropout=dropout,
|
|
normalize_before=normalize_before,
|
|
)
|
|
|
|
if normalize_before:
|
|
decoder_norm = nn.LayerNorm(d_model)
|
|
else:
|
|
decoder_norm = None
|
|
|
|
self.decoder = nn.TransformerDecoder(
|
|
decoder_layer=decoder_layer,
|
|
num_layers=num_layers,
|
|
norm=decoder_norm,
|
|
)
|
|
|
|
self.decoder_output_layer = torch.nn.Linear(d_model, self.decoder_num_class)
|
|
self.decoder_criterion = LabelSmoothingLoss()
|
|
else:
|
|
self.decoder_criterion = None
|
|
|
|
@torch.jit.export
|
|
def forward(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_key_padding_mask: torch.Tensor,
|
|
token_ids: List[List[int]],
|
|
sos_id: int,
|
|
eos_id: int,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
memory:
|
|
It's the output of the encoder with shape (T, N, C)
|
|
memory_key_padding_mask:
|
|
The padding mask from the encoder.
|
|
token_ids:
|
|
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
|
The IDs can be either phone IDs or word piece IDs.
|
|
sos_id:
|
|
sos token id
|
|
eos_id:
|
|
eos token id
|
|
Returns:
|
|
A scalar, the **sum** of label smoothing loss over utterances
|
|
in the batch without any normalization.
|
|
"""
|
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
|
ys_in = [torch.tensor(y) for y in ys_in]
|
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
|
|
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
|
ys_out = [torch.tensor(y) for y in ys_out]
|
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
|
|
|
device = memory.device
|
|
ys_in_pad = ys_in_pad.to(device)
|
|
ys_out_pad = ys_out_pad.to(device)
|
|
|
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
|
|
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
|
# TODO: Use length information to create the decoder padding mask
|
|
# We set the first column to False since the first column in ys_in_pad
|
|
# contains sos_id, which is the same as eos_id in our current setting.
|
|
tgt_key_padding_mask[:, 0] = False
|
|
|
|
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
|
tgt = self.decoder_pos(tgt)
|
|
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
pred_pad = self.decoder(
|
|
tgt=tgt,
|
|
memory=memory,
|
|
tgt_mask=tgt_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
) # (T, N, C)
|
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
|
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
|
|
|
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
|
|
|
return decoder_loss
|
|
|
|
@torch.jit.export
|
|
def decoder_nll(
|
|
self,
|
|
memory: torch.Tensor,
|
|
memory_key_padding_mask: torch.Tensor,
|
|
token_ids: List[torch.Tensor],
|
|
sos_id: int,
|
|
eos_id: int,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
memory:
|
|
It's the output of the encoder with shape (T, N, C)
|
|
memory_key_padding_mask:
|
|
The padding mask from the encoder.
|
|
token_ids:
|
|
A list-of-list IDs (e.g., word piece IDs).
|
|
Each sublist represents an utterance.
|
|
sos_id:
|
|
The token ID for SOS.
|
|
eos_id:
|
|
The token ID for EOS.
|
|
Returns:
|
|
A 2-D tensor of shape (len(token_ids), max_token_length)
|
|
representing the cross entropy loss (i.e., negative log-likelihood).
|
|
"""
|
|
# The common part between this function and decoder_forward could be
|
|
# extracted as a separate function.
|
|
if isinstance(token_ids[0], torch.Tensor):
|
|
# This branch is executed by torchscript in C++.
|
|
# See https://github.com/k2-fsa/k2/pull/870
|
|
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
|
token_ids = [tolist(t) for t in token_ids]
|
|
|
|
ys_in = add_sos(token_ids, sos_id=sos_id)
|
|
ys_in = [torch.tensor(y) for y in ys_in]
|
|
ys_in_pad = pad_sequence(ys_in, batch_first=True, padding_value=float(eos_id))
|
|
|
|
ys_out = add_eos(token_ids, eos_id=eos_id)
|
|
ys_out = [torch.tensor(y) for y in ys_out]
|
|
ys_out_pad = pad_sequence(ys_out, batch_first=True, padding_value=float(-1))
|
|
|
|
device = memory.device
|
|
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
|
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
|
|
|
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(device)
|
|
|
|
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
|
# TODO: Use length information to create the decoder padding mask
|
|
# We set the first column to False since the first column in ys_in_pad
|
|
# contains sos_id, which is the same as eos_id in our current setting.
|
|
tgt_key_padding_mask[:, 0] = False
|
|
|
|
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
|
tgt = self.decoder_pos(tgt)
|
|
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
|
pred_pad = self.decoder(
|
|
tgt=tgt,
|
|
memory=memory,
|
|
tgt_mask=tgt_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
) # (T, B, F)
|
|
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
|
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
|
# nll: negative log-likelihood
|
|
nll = torch.nn.functional.cross_entropy(
|
|
pred_pad.view(-1, self.decoder_num_class),
|
|
ys_out_pad.view(-1),
|
|
ignore_index=-1,
|
|
reduction="none",
|
|
)
|
|
|
|
nll = nll.view(pred_pad.shape[0], -1)
|
|
|
|
return nll
|
|
|
|
|
|
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
|
"""Prepend sos_id to each utterance.
|
|
Args:
|
|
token_ids:
|
|
A list-of-list of token IDs. Each sublist contains
|
|
token IDs (e.g., word piece IDs) of an utterance.
|
|
sos_id:
|
|
The ID of the SOS token.
|
|
Return:
|
|
Return a new list-of-list, where each sublist starts
|
|
with SOS ID.
|
|
"""
|
|
return [[sos_id] + utt for utt in token_ids]
|
|
|
|
|
|
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
|
"""Append eos_id to each utterance.
|
|
Args:
|
|
token_ids:
|
|
A list-of-list of token IDs. Each sublist contains
|
|
token IDs (e.g., word piece IDs) of an utterance.
|
|
eos_id:
|
|
The ID of the EOS token.
|
|
Return:
|
|
Return a new list-of-list, where each sublist ends
|
|
with EOS ID.
|
|
"""
|
|
return [utt + [eos_id] for utt in token_ids]
|
|
|
|
|
|
def decoder_padding_mask(ys_pad: torch.Tensor, ignore_id: int = -1) -> torch.Tensor:
|
|
"""Generate a length mask for input.
|
|
The masked position are filled with True,
|
|
Unmasked positions are filled with False.
|
|
Args:
|
|
ys_pad:
|
|
padded tensor of dimension (batch_size, input_length).
|
|
ignore_id:
|
|
the ignored number (the padding number) in ys_pad
|
|
Returns:
|
|
Tensor:
|
|
a bool tensor of the same shape as the input tensor.
|
|
"""
|
|
ys_mask = ys_pad == ignore_id
|
|
return ys_mask
|
|
|
|
|
|
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
|
"""Generate a square mask for the sequence. The masked positions are
|
|
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
|
The mask can be used for masked self-attention.
|
|
For instance, if sz is 3, it returns::
|
|
tensor([[0., -inf, -inf],
|
|
[0., 0., -inf],
|
|
[0., 0., 0]])
|
|
Args:
|
|
sz: mask size
|
|
Returns:
|
|
A square mask of dimension (sz, sz)
|
|
"""
|
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
|
mask = (
|
|
mask.float()
|
|
.masked_fill(mask == 0, float("-inf"))
|
|
.masked_fill(mask == 1, float(0.0))
|
|
)
|
|
return mask
|
|
|
|
|
|
def tolist(t: torch.Tensor) -> List[int]:
|
|
"""Used by jit"""
|
|
return torch.jit.annotate(List[int], t.tolist())
|