mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
219 lines
6.4 KiB
Python
Executable File
219 lines
6.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the LJSpeech dataset.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from fbank import MatchaFbank, MatchaFbankConfig
|
|
from lhotse import CutSet, LilcomChunkyWriter
|
|
from lhotse.recipes.utils import read_manifests_if_cached
|
|
|
|
from icefall.utils import get_executor
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-jobs",
|
|
type=int,
|
|
default=1,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--src-dir",
|
|
type=Path,
|
|
default=Path("data/manifests"),
|
|
help="Path to the manifest files",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output-dir",
|
|
type=Path,
|
|
default=Path("data/fbank"),
|
|
help="Path to the tokenized files",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset-parts",
|
|
type=str,
|
|
default="Basic",
|
|
help="Space separated dataset parts",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--prefix",
|
|
type=str,
|
|
default="wenetspeech4tts",
|
|
help="prefix of the manifest file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--suffix",
|
|
type=str,
|
|
default="jsonl.gz",
|
|
help="suffix of the manifest file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split",
|
|
type=int,
|
|
default=100,
|
|
help="Split the cut_set into multiple parts",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--resample-to-24kHz",
|
|
default=True,
|
|
help="Resample the audio to 24kHz",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--extractor",
|
|
type=str,
|
|
choices=["bigvgan", "hifigan"],
|
|
default="bigvgan",
|
|
help="The type of extractor to use",
|
|
)
|
|
return parser
|
|
|
|
|
|
def compute_fbank(args):
|
|
src_dir = Path(args.src_dir)
|
|
output_dir = Path(args.output_dir)
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
num_jobs = min(args.num_jobs, os.cpu_count())
|
|
dataset_parts = args.dataset_parts.replace("--dataset-parts", "").strip().split(" ")
|
|
|
|
logging.info(f"num_jobs: {num_jobs}")
|
|
logging.info(f"src_dir: {src_dir}")
|
|
logging.info(f"output_dir: {output_dir}")
|
|
logging.info(f"dataset_parts: {dataset_parts}")
|
|
if args.extractor == "bigvgan":
|
|
config = MatchaFbankConfig(
|
|
n_fft=1024,
|
|
n_mels=100,
|
|
sampling_rate=24_000,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
f_min=0,
|
|
f_max=None,
|
|
)
|
|
elif args.extractor == "hifigan":
|
|
config = MatchaFbankConfig(
|
|
n_fft=1024,
|
|
n_mels=80,
|
|
sampling_rate=22050,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
f_min=0,
|
|
f_max=8000,
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Extractor {args.extractor} is not implemented")
|
|
|
|
extractor = MatchaFbank(config)
|
|
|
|
manifests = read_manifests_if_cached(
|
|
dataset_parts=dataset_parts,
|
|
output_dir=args.src_dir,
|
|
prefix=args.prefix,
|
|
suffix=args.suffix,
|
|
types=["recordings", "supervisions", "cuts"],
|
|
)
|
|
|
|
with get_executor() as ex:
|
|
for partition, m in manifests.items():
|
|
logging.info(
|
|
f"Processing partition: {partition} CUDA: {torch.cuda.is_available()}"
|
|
)
|
|
try:
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=m["recordings"],
|
|
supervisions=m["supervisions"],
|
|
)
|
|
except Exception:
|
|
cut_set = m["cuts"]
|
|
|
|
if args.split > 1:
|
|
cut_sets = cut_set.split(args.split)
|
|
else:
|
|
cut_sets = [cut_set]
|
|
|
|
for idx, part in enumerate(cut_sets):
|
|
if args.split > 1:
|
|
storage_path = f"{args.output_dir}/{args.prefix}_{args.extractor}_{partition}_{idx}"
|
|
else:
|
|
storage_path = (
|
|
f"{args.output_dir}/{args.prefix}_{args.extractor}_{partition}"
|
|
)
|
|
|
|
if args.resample_to_24kHz:
|
|
part = part.resample(24000)
|
|
|
|
with torch.no_grad():
|
|
part = part.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=storage_path,
|
|
num_jobs=num_jobs if ex is None else 64,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
|
|
if args.split > 1:
|
|
cuts_filename = (
|
|
f"{args.prefix}_cuts_{partition}.{idx}.{args.suffix}"
|
|
)
|
|
else:
|
|
cuts_filename = f"{args.prefix}_cuts_{partition}.{args.suffix}"
|
|
|
|
part.to_file(f"{args.output_dir}/{cuts_filename}")
|
|
logging.info(f"Saved {cuts_filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
args = get_parser().parse_args()
|
|
compute_fbank(args)
|