icefall/egs/gigaspeech/ASR/local/compute_fbank_musan.py
Wang, Guanbo 5fe58de43c
GigaSpeech recipe (#120)
* initial commit

* support download, data prep, and fbank

* on-the-fly feature extraction by default

* support BPE based lang

* support HLG for BPE

* small fix

* small fix

* chunked feature extraction by default

* Compute features for GigaSpeech by splitting the manifest.

* Fixes after review.

* Split manifests into 2000 pieces.

* set audio duration mismatch tolerance to 0.01

* small fix

* add conformer training recipe

* Add conformer.py without pre-commit checking

* lazy loading and use SingleCutSampler

* DynamicBucketingSampler

* use KaldifeatFbank to compute fbank for musan

* use pretrained language model and lexicon

* use 3gram to decode, 4gram to rescore

* Add decode.py

* Update .flake8

* Delete compute_fbank_gigaspeech.py

* Use BucketingSampler for valid and test dataloader

* Update params in train.py

* Use bpe_500

* update params in decode.py

* Decrease num_paths while CUDA OOM

* Added README

* Update RESULTS

* black

* Decrease num_paths while CUDA OOM

* Decode with post-processing

* Update results

* Remove lazy_load option

* Use default `storage_type`

* Keep the original tolerance

* Use split-lazy

* black

* Update pretrained model

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
2022-04-14 16:07:22 +08:00

104 lines
2.8 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
combine,
)
from lhotse.recipes.utils import read_manifests_if_cached
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_musan():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
# number of workers in dataloader
num_workers = 10
# number of seconds in a batch
batch_duration = 600
dataset_parts = (
"music",
"speech",
"noise",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
)
assert manifests is not None
musan_cuts_path = output_dir / "cuts_musan.json.gz"
if musan_cuts_path.is_file():
logging.info(f"{musan_cuts_path} already exists - skipping")
return
logging.info("Extracting features for Musan")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
musan_cuts = (
CutSet.from_manifests(
recordings=combine(
part["recordings"] for part in manifests.values()
)
)
.cut_into_windows(10.0)
.filter(lambda c: c.duration > 5)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_musan",
num_workers=num_workers,
batch_duration=batch_duration,
)
)
musan_cuts.to_json(musan_cuts_path)
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_musan()
if __name__ == "__main__":
main()