mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* initial commit for SPGISpeech recipe * add decoding * add spgispeech transducer * remove conformer ctc; minor fixes in RNN-T * add results * add tensorboard * add pretrained model to HF * remove unused scripts and soft link common scripts * remove duplicate files * pre commit hooks * remove change in librispeech * pre commit hook * add CER numbers
146 lines
4.7 KiB
Python
Executable File
146 lines
4.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the SPGISpeech dataset.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
from lhotse import load_manifest_lazy, LilcomChunkyWriter
|
|
from lhotse.features.kaldifeat import (
|
|
KaldifeatFbank,
|
|
KaldifeatFbankConfig,
|
|
KaldifeatMelOptions,
|
|
KaldifeatFrameOptions,
|
|
)
|
|
from lhotse.manipulation import combine
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--num-splits",
|
|
type=int,
|
|
default=20,
|
|
help="Number of splits for the train set.",
|
|
)
|
|
parser.add_argument(
|
|
"--start",
|
|
type=int,
|
|
default=0,
|
|
help="Start index of the train set split.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop",
|
|
type=int,
|
|
default=-1,
|
|
help="Stop index of the train set split.",
|
|
)
|
|
parser.add_argument(
|
|
"--test",
|
|
action="store_true",
|
|
help="If set, only compute features for the dev and val set.",
|
|
)
|
|
parser.add_argument(
|
|
"--train",
|
|
action="store_true",
|
|
help="If set, only compute features for the train set.",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def compute_fbank_spgispeech(args):
|
|
assert args.train or args.test, "Either train or test must be set."
|
|
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/fbank")
|
|
|
|
sampling_rate = 16000
|
|
num_mel_bins = 80
|
|
|
|
extractor = KaldifeatFbank(
|
|
KaldifeatFbankConfig(
|
|
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
|
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
|
device="cuda",
|
|
)
|
|
)
|
|
|
|
if args.train:
|
|
logging.info(f"Processing train")
|
|
cut_set = load_manifest_lazy(src_dir / f"cuts_train_raw.jsonl.gz")
|
|
chunk_size = len(cut_set) // args.num_splits
|
|
cut_sets = cut_set.split_lazy(
|
|
output_dir=src_dir / f"cuts_train_raw_split{args.num_splits}",
|
|
chunk_size=chunk_size,
|
|
)
|
|
start = args.start
|
|
stop = min(args.stop, args.num_splits) if args.stop > 0 else args.num_splits
|
|
num_digits = len(str(args.num_splits))
|
|
for i in range(start, stop):
|
|
idx = f"{i + 1}".zfill(num_digits)
|
|
logging.info(f"Processing train split {i}")
|
|
cs = cut_sets[i].compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=output_dir / f"feats_train_{idx}",
|
|
manifest_path=src_dir / f"cuts_train_{idx}.jsonl.gz",
|
|
batch_duration=500,
|
|
num_workers=4,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
|
|
if args.test:
|
|
for partition in ["dev", "val"]:
|
|
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
|
|
logging.info(f"{partition} already exists - skipping.")
|
|
continue
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = load_manifest_lazy(src_dir / f"cuts_{partition}_raw.jsonl.gz")
|
|
cut_set = cut_set.compute_and_store_features_batch(
|
|
extractor=extractor,
|
|
storage_path=output_dir / f"feats_{partition}",
|
|
manifest_path=src_dir / f"cuts_{partition}.jsonl.gz",
|
|
batch_duration=500,
|
|
num_workers=4,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
args = get_args()
|
|
compute_fbank_spgispeech(args)
|