icefall/egs/spgispeech/ASR/local/compute_fbank_spgispeech.py
Desh Raj 5aafbb970e
SPGISpeech recipe (#334)
* initial commit for SPGISpeech recipe

* add decoding

* add spgispeech transducer

* remove conformer ctc; minor fixes in RNN-T

* add results

* add tensorboard

* add pretrained model to HF

* remove unused scripts and soft link common scripts

* remove duplicate files

* pre commit hooks

* remove change in librispeech

* pre commit hook

* add CER numbers
2022-05-16 20:52:14 +08:00

146 lines
4.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the SPGISpeech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import torch
from lhotse import load_manifest_lazy, LilcomChunkyWriter
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatMelOptions,
KaldifeatFrameOptions,
)
from lhotse.manipulation import combine
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--num-splits",
type=int,
default=20,
help="Number of splits for the train set.",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Start index of the train set split.",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop index of the train set split.",
)
parser.add_argument(
"--test",
action="store_true",
help="If set, only compute features for the dev and val set.",
)
parser.add_argument(
"--train",
action="store_true",
help="If set, only compute features for the train set.",
)
return parser.parse_args()
def compute_fbank_spgispeech(args):
assert args.train or args.test, "Either train or test must be set."
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
sampling_rate = 16000
num_mel_bins = 80
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
if args.train:
logging.info(f"Processing train")
cut_set = load_manifest_lazy(src_dir / f"cuts_train_raw.jsonl.gz")
chunk_size = len(cut_set) // args.num_splits
cut_sets = cut_set.split_lazy(
output_dir=src_dir / f"cuts_train_raw_split{args.num_splits}",
chunk_size=chunk_size,
)
start = args.start
stop = min(args.stop, args.num_splits) if args.stop > 0 else args.num_splits
num_digits = len(str(args.num_splits))
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing train split {i}")
cs = cut_sets[i].compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_train_{idx}",
manifest_path=src_dir / f"cuts_train_{idx}.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
if args.test:
for partition in ["dev", "val"]:
if (output_dir / f"cuts_{partition}.jsonl.gz").is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = load_manifest_lazy(src_dir / f"cuts_{partition}_raw.jsonl.gz")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{partition}",
manifest_path=src_dir / f"cuts_{partition}.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_spgispeech(args)