2024-08-01 20:32:25 +08:00

904 lines
32 KiB
Python

# Copyright 2022-2023 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
from typing import Tuple, Union
import torch
import torch.nn as nn
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
def logaddexp_onnx(x: Tensor, y: Tensor) -> Tensor:
max_value = torch.max(x, y)
diff = torch.abs(x - y)
return max_value + torch.log1p(torch.exp(-diff))
# RuntimeError: Exporting the operator logaddexp to ONNX opset version
# 14 is not supported. Please feel free to request support or submit
# a pull request on PyTorch GitHub.
#
# The following function is to solve the above error when exporting
# models to ONNX via torch.jit.trace()
def logaddexp(x: Tensor, y: Tensor) -> Tensor:
# Caution(fangjun): Put torch.jit.is_scripting() before
# torch.onnx.is_in_onnx_export();
# otherwise, it will cause errors for torch.jit.script().
#
# torch.logaddexp() works for both torch.jit.script() and
# torch.jit.trace() but it causes errors for ONNX export.
#
if torch.jit.is_scripting():
# Note: We cannot use torch.jit.is_tracing() here as it also
# matches torch.onnx.export().
return torch.logaddexp(x, y)
elif torch.onnx.is_in_onnx_export():
return logaddexp_onnx(x, y)
else:
# for torch.jit.trace()
return torch.logaddexp(x, y)
class PiecewiseLinear(object):
"""
Piecewise linear function, from float to float, specified as nonempty list of (x,y) pairs with
the x values in order. x values <[initial x] or >[final x] are map to [initial y], [final y]
respectively.
"""
def __init__(self, *args):
assert len(args) >= 1, len(args)
if len(args) == 1 and isinstance(args[0], PiecewiseLinear):
self.pairs = list(args[0].pairs)
else:
self.pairs = [(float(x), float(y)) for x, y in args]
for x, y in self.pairs:
assert isinstance(x, (float, int)), type(x)
assert isinstance(y, (float, int)), type(y)
for i in range(len(self.pairs) - 1):
assert self.pairs[i + 1][0] > self.pairs[i][0], (
i,
self.pairs[i],
self.pairs[i + 1],
)
def __str__(self):
# e.g. 'PiecewiseLinear((0., 10.), (100., 0.))'
return f"PiecewiseLinear({str(self.pairs)[1:-1]})"
def __call__(self, x):
if x <= self.pairs[0][0]:
return self.pairs[0][1]
elif x >= self.pairs[-1][0]:
return self.pairs[-1][1]
else:
cur_x, cur_y = self.pairs[0]
for i in range(1, len(self.pairs)):
next_x, next_y = self.pairs[i]
if x >= cur_x and x <= next_x:
return cur_y + (next_y - cur_y) * (x - cur_x) / (next_x - cur_x)
cur_x, cur_y = next_x, next_y
assert False
def __mul__(self, alpha):
return PiecewiseLinear(*[(x, y * alpha) for x, y in self.pairs])
def __add__(self, x):
if isinstance(x, (float, int)):
return PiecewiseLinear(*[(p[0], p[1] + x) for p in self.pairs])
s, x = self.get_common_basis(x)
return PiecewiseLinear(
*[(sp[0], sp[1] + xp[1]) for sp, xp in zip(s.pairs, x.pairs)]
)
def max(self, x):
if isinstance(x, (float, int)):
x = PiecewiseLinear((0, x))
s, x = self.get_common_basis(x, include_crossings=True)
return PiecewiseLinear(
*[(sp[0], max(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)]
)
def min(self, x):
if isinstance(x, float) or isinstance(x, int):
x = PiecewiseLinear((0, x))
s, x = self.get_common_basis(x, include_crossings=True)
return PiecewiseLinear(
*[(sp[0], min(sp[1], xp[1])) for sp, xp in zip(s.pairs, x.pairs)]
)
def __eq__(self, other):
return self.pairs == other.pairs
def get_common_basis(self, p: "PiecewiseLinear", include_crossings: bool = False):
"""
Returns (self_mod, p_mod) which are equivalent piecewise linear
functions to self and p, but with the same x values.
p: the other piecewise linear function
include_crossings: if true, include in the x values positions
where the functions indicate by this and p cross.
"""
assert isinstance(p, PiecewiseLinear), type(p)
# get sorted x-values without repetition.
x_vals = sorted(set([x for x, _ in self.pairs] + [x for x, _ in p.pairs]))
y_vals1 = [self(x) for x in x_vals]
y_vals2 = [p(x) for x in x_vals]
if include_crossings:
extra_x_vals = []
for i in range(len(x_vals) - 1):
if (y_vals1[i] > y_vals2[i]) != (y_vals1[i + 1] > y_vals2[i + 1]):
# if the two lines in this subsegment potentially cross each other..
diff_cur = abs(y_vals1[i] - y_vals2[i])
diff_next = abs(y_vals1[i + 1] - y_vals2[i + 1])
# `pos`, between 0 and 1, gives the relative x position,
# with 0 being x_vals[i] and 1 being x_vals[i+1].
pos = diff_cur / (diff_cur + diff_next)
extra_x_val = x_vals[i] + pos * (x_vals[i + 1] - x_vals[i])
extra_x_vals.append(extra_x_val)
if len(extra_x_vals) > 0:
x_vals = sorted(set(x_vals + extra_x_vals))
y_vals1 = [self(x) for x in x_vals]
y_vals2 = [p(x) for x in x_vals]
return (
PiecewiseLinear(*zip(x_vals, y_vals1)),
PiecewiseLinear(*zip(x_vals, y_vals2)),
)
class ScheduledFloat(torch.nn.Module):
"""
This object is a torch.nn.Module only because we want it to show up in [top_level module].modules();
it does not have a working forward() function. You are supposed to cast it to float, as
in, float(parent_module.whatever), and use it as something like a dropout prob.
It is a floating point value whose value changes depending on the batch count of the
training loop. It is a piecewise linear function where you specify the (x,y) pairs
in sorted order on x; x corresponds to the batch index. For batch-index values before the
first x or after the last x, we just use the first or last y value.
Example:
self.dropout = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0.0)
`default` is used when self.batch_count is not set or not in training mode or in
torch.jit scripting mode.
"""
def __init__(self, *args, default: float = 0.0):
super().__init__()
# self.batch_count and self.name will be written to in the training loop.
self.batch_count = None
self.name = None
self.default = default
self.schedule = PiecewiseLinear(*args)
def extra_repr(self) -> str:
return (
f"batch_count={self.batch_count}, schedule={str(self.schedule.pairs[1:-1])}"
)
def __float__(self):
batch_count = self.batch_count
if (
batch_count is None
or not self.training
or torch.jit.is_scripting()
or torch.jit.is_tracing()
):
return float(self.default)
else:
ans = self.schedule(self.batch_count)
if random.random() < 0.0002:
logging.info(
f"ScheduledFloat: name={self.name}, batch_count={self.batch_count}, ans={ans}"
)
return ans
def __add__(self, x):
if isinstance(x, float) or isinstance(x, int):
return ScheduledFloat(self.schedule + x, default=self.default)
else:
return ScheduledFloat(
self.schedule + x.schedule, default=self.default + x.default
)
def max(self, x):
if isinstance(x, float) or isinstance(x, int):
return ScheduledFloat(self.schedule.max(x), default=self.default)
else:
return ScheduledFloat(
self.schedule.max(x.schedule), default=max(self.default, x.default)
)
FloatLike = Union[float, ScheduledFloat]
def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor:
"""
A randomized way of casting a floating point value to half precision.
"""
if x.dtype == torch.float16:
return x
x_abs = x.abs()
is_too_small = x_abs < min_abs
# for elements where is_too_small is true, random_val will contain +-min_abs with
# probability (x.abs() / min_abs), and 0.0 otherwise. [so this preserves expectations,
# for those elements].
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs)
return torch.where(is_too_small, random_val, x).to(torch.float16)
class CutoffEstimator:
"""
Estimates cutoffs of an arbitrary numerical quantity such that a specified
proportion of items will be above the cutoff on average.
p is the proportion of items that should be above the cutoff.
"""
def __init__(self, p: float):
self.p = p
# total count of items
self.count = 0
# total count of items that were above the cutoff
self.count_above = 0
# initial cutoff value
self.cutoff = 0
def __call__(self, x: float) -> bool:
"""
Returns true if x is above the cutoff.
"""
ans = x > self.cutoff
self.count += 1
if ans:
self.count_above += 1
cur_p = self.count_above / self.count
delta_p = cur_p - self.p
if (delta_p > 0) == ans:
q = abs(delta_p)
self.cutoff = x * q + self.cutoff * (1 - q)
return ans
class SoftmaxFunction(torch.autograd.Function):
"""
Tries to handle half-precision derivatives in a randomized way that should
be more accurate for training than the default behavior.
"""
@staticmethod
def forward(ctx, x: Tensor, dim: int):
ans = x.softmax(dim=dim)
# if x dtype is float16, x.softmax() returns a float32 because
# (presumably) that op does not support float16, and autocast
# is enabled.
if torch.is_autocast_enabled():
ans = ans.to(torch.float16)
ctx.save_for_backward(ans)
ctx.x_dtype = x.dtype
ctx.dim = dim
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor):
(ans,) = ctx.saved_tensors
with torch.cuda.amp.autocast(enabled=False):
ans_grad = ans_grad.to(torch.float32)
ans = ans.to(torch.float32)
x_grad = ans_grad * ans
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True)
return x_grad, None
def softmax(x: Tensor, dim: int):
if not x.requires_grad or torch.jit.is_scripting() or torch.jit.is_tracing():
return x.softmax(dim=dim)
return SoftmaxFunction.apply(x, dim)
class MaxEigLimiterFunction(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x: Tensor,
coeffs: Tensor,
direction: Tensor,
channel_dim: int,
grad_scale: float,
) -> Tensor:
ctx.channel_dim = channel_dim
ctx.grad_scale = grad_scale
ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach())
return x
@staticmethod
def backward(ctx, x_grad, *args):
with torch.enable_grad():
(x_orig, coeffs, new_direction) = ctx.saved_tensors
x_orig.requires_grad = True
num_channels = x_orig.shape[ctx.channel_dim]
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels)
new_direction.requires_grad = False
x = x - x.mean(dim=0)
x_var = (x**2).mean()
x_residual = x - coeffs * new_direction
x_residual_var = (x_residual**2).mean()
# `variance_proportion` is the proportion of the variance accounted for
# by the top eigen-direction. This is to be minimized.
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
variance_proportion.backward()
x_orig_grad = x_orig.grad
x_extra_grad = (
x_orig.grad
* ctx.grad_scale
* x_grad.norm()
/ (x_orig_grad.norm() + 1.0e-20)
)
return x_grad + x_extra_grad.detach(), None, None, None, None
class BiasNormFunction(torch.autograd.Function):
# This computes:
# scales = (torch.mean((x - bias) ** 2, keepdim=True)) ** -0.5 * log_scale.exp()
# return x * scales
# (after unsqueezing the bias), but it does it in a memory-efficient way so that
# it can just store the returned value (chances are, this will also be needed for
# some other reason, related to the next operation, so we can save memory).
@staticmethod
def forward(
ctx,
x: Tensor,
bias: Tensor,
log_scale: Tensor,
channel_dim: int,
store_output_for_backprop: bool,
) -> Tensor:
assert bias.ndim == 1
if channel_dim < 0:
channel_dim = channel_dim + x.ndim
ctx.store_output_for_backprop = store_output_for_backprop
ctx.channel_dim = channel_dim
for _ in range(channel_dim + 1, x.ndim):
bias = bias.unsqueeze(-1)
scales = (
torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5
) * log_scale.exp()
ans = x * scales
ctx.save_for_backward(
ans.detach() if store_output_for_backprop else x,
scales.detach(),
bias.detach(),
log_scale.detach(),
)
return ans
@staticmethod
def backward(ctx, ans_grad: Tensor) -> Tensor:
ans_or_x, scales, bias, log_scale = ctx.saved_tensors
if ctx.store_output_for_backprop:
x = ans_or_x / scales
else:
x = ans_or_x
x = x.detach()
x.requires_grad = True
bias.requires_grad = True
log_scale.requires_grad = True
with torch.enable_grad():
# recompute scales from x, bias and log_scale.
scales = (
torch.mean((x - bias) ** 2, dim=ctx.channel_dim, keepdim=True) ** -0.5
) * log_scale.exp()
ans = x * scales
ans.backward(gradient=ans_grad)
return x.grad, bias.grad.flatten(), log_scale.grad, None, None
class BiasNorm(torch.nn.Module):
"""
This is intended to be a simpler, and hopefully cheaper, replacement for
LayerNorm. The observation this is based on, is that Transformer-type
networks, especially with pre-norm, sometimes seem to set one of the
feature dimensions to a large constant value (e.g. 50), which "defeats"
the LayerNorm because the output magnitude is then not strongly dependent
on the other (useful) features. Presumably the weight and bias of the
LayerNorm are required to allow it to do this.
Instead, we give the BiasNorm a trainable bias that it can use when
computing the scale for normalization. We also give it a (scalar)
trainable scale on the output.
Args:
num_channels: the number of channels, e.g. 512.
channel_dim: the axis/dimension corresponding to the channel,
interpreted as an offset from the input's ndim if negative.
This is NOT the num_channels; it should typically be one of
{-2, -1, 0, 1, 2, 3}.
log_scale: the initial log-scale that we multiply the output by; this
is learnable.
log_scale_min: FloatLike, minimum allowed value of log_scale
log_scale_max: FloatLike, maximum allowed value of log_scale
store_output_for_backprop: only possibly affects memory use; recommend
to set to True if you think the output of this module is more likely
than the input of this module to be required to be stored for the
backprop.
"""
def __init__(
self,
num_channels: int,
channel_dim: int = -1, # CAUTION: see documentation.
log_scale: float = 1.0,
log_scale_min: float = -1.5,
log_scale_max: float = 1.5,
store_output_for_backprop: bool = False,
) -> None:
super(BiasNorm, self).__init__()
self.num_channels = num_channels
self.channel_dim = channel_dim
self.log_scale = nn.Parameter(torch.tensor(log_scale))
self.bias = nn.Parameter(torch.empty(num_channels).normal_(mean=0, std=1e-4))
self.log_scale_min = log_scale_min
self.log_scale_max = log_scale_max
self.store_output_for_backprop = store_output_for_backprop
def forward(self, x: Tensor) -> Tensor:
assert x.shape[self.channel_dim] == self.num_channels
if torch.jit.is_scripting() or torch.jit.is_tracing():
channel_dim = self.channel_dim
if channel_dim < 0:
channel_dim += x.ndim
bias = self.bias
for _ in range(channel_dim + 1, x.ndim):
bias = bias.unsqueeze(-1)
scales = (
torch.mean((x - bias) ** 2, dim=channel_dim, keepdim=True) ** -0.5
) * self.log_scale.exp()
return x * scales
log_scale = limit_param_value(
self.log_scale,
min=float(self.log_scale_min),
max=float(self.log_scale_max),
training=self.training,
)
return BiasNormFunction.apply(
x, self.bias, log_scale, self.channel_dim, self.store_output_for_backprop
)
class ChunkCausalDepthwiseConv1d(torch.nn.Module):
"""
Behaves like a depthwise 1d convolution, except that it is causal in
a chunkwise way, as if we had a block-triangular attention mask.
The chunk size is provided at test time (it should probably be
kept in sync with the attention mask).
This has a little more than twice the parameters of a conventional
depthwise conv1d module: we implement it by having one
depthwise convolution, of half the width, that is causal (via
right-padding); and one depthwise convolution that is applied only
within chunks, that we multiply by a scaling factor which depends
on the position within the chunk.
Args:
Accepts the standard args and kwargs that nn.Linear accepts
e.g. in_features, out_features, bias=False.
initial_scale: you can override this if you want to increase
or decrease the initial magnitude of the module's output
(affects the initialization of weight_scale and bias_scale).
Another option, if you want to do something like this, is
to re-initialize the parameters.
"""
def __init__(
self,
channels: int,
kernel_size: int,
initial_scale: float = 1.0,
bias: bool = True,
):
super().__init__()
assert kernel_size % 2 == 1
half_kernel_size = (kernel_size + 1) // 2
# will pad manually, on one side.
self.causal_conv = nn.Conv1d(
in_channels=channels,
out_channels=channels,
groups=channels,
kernel_size=half_kernel_size,
padding=0,
bias=True,
)
self.chunkwise_conv = nn.Conv1d(
in_channels=channels,
out_channels=channels,
groups=channels,
kernel_size=kernel_size,
padding=kernel_size // 2,
bias=bias,
)
# first row is correction factors added to the scale near the left edge of the chunk,
# second row is correction factors added to the scale near the right edge of the chunk,
# both of these are added to a default scale of 1.0.
self.chunkwise_conv_scale = nn.Parameter(torch.zeros(2, channels, kernel_size))
self.kernel_size = kernel_size
with torch.no_grad():
self.causal_conv.weight[:] *= initial_scale
self.chunkwise_conv.weight[:] *= initial_scale
if bias:
torch.nn.init.uniform_(
self.causal_conv.bias, -0.1 * initial_scale, 0.1 * initial_scale
)
def forward(self, x: Tensor, chunk_size: int = -1) -> Tensor:
"""Forward function.
Args:
x: a Tensor of shape (batch_size, channels, seq_len)
chunk_size: the chunk size, in frames; does not have to divide seq_len exactly.
"""
(batch_size, num_channels, seq_len) = x.shape
# half_kernel_size = self.kernel_size + 1 // 2
# left_pad is half_kernel_size - 1 where half_kernel_size is the size used
# in the causal conv. It's the amount by which we must pad on the left,
# to make the convolution causal.
left_pad = self.kernel_size // 2
if chunk_size < 0 or chunk_size > seq_len:
chunk_size = seq_len
right_pad = -seq_len % chunk_size
x = torch.nn.functional.pad(x, (left_pad, right_pad))
x_causal = self.causal_conv(x[..., : left_pad + seq_len])
assert x_causal.shape == (batch_size, num_channels, seq_len)
x_chunk = x[..., left_pad:]
num_chunks = x_chunk.shape[2] // chunk_size
x_chunk = x_chunk.reshape(batch_size, num_channels, num_chunks, chunk_size)
x_chunk = x_chunk.permute(0, 2, 1, 3).reshape(
batch_size * num_chunks, num_channels, chunk_size
)
x_chunk = self.chunkwise_conv(x_chunk) # does not change shape
chunk_scale = self._get_chunk_scale(chunk_size)
x_chunk = x_chunk * chunk_scale
x_chunk = x_chunk.reshape(
batch_size, num_chunks, num_channels, chunk_size
).permute(0, 2, 1, 3)
x_chunk = x_chunk.reshape(batch_size, num_channels, num_chunks * chunk_size)[
..., :seq_len
]
return x_chunk + x_causal
def _get_chunk_scale(self, chunk_size: int):
"""Returns tensor of shape (num_channels, chunk_size) that will be used to
scale the output of self.chunkwise_conv."""
left_edge = self.chunkwise_conv_scale[0]
right_edge = self.chunkwise_conv_scale[1]
if chunk_size < self.kernel_size:
left_edge = left_edge[:, :chunk_size]
right_edge = right_edge[:, -chunk_size:]
else:
t = chunk_size - self.kernel_size
channels = left_edge.shape[0]
pad = torch.zeros(
channels, t, device=left_edge.device, dtype=left_edge.dtype
)
left_edge = torch.cat((left_edge, pad), dim=-1)
right_edge = torch.cat((pad, right_edge), dim=-1)
return 1.0 + (left_edge + right_edge)
def streaming_forward(
self,
x: Tensor,
cache: Tensor,
) -> Tuple[Tensor, Tensor]:
"""Streaming Forward function.
Args:
x: a Tensor of shape (batch_size, channels, seq_len)
cache: cached left context of shape (batch_size, channels, left_pad)
"""
(batch_size, num_channels, seq_len) = x.shape
# left_pad is half_kernel_size - 1 where half_kernel_size is the size used
# in the causal conv. It's the amount by which we must pad on the left,
# to make the convolution causal.
left_pad = self.kernel_size // 2
# Pad cache
assert cache.shape[-1] == left_pad, (cache.shape[-1], left_pad)
x = torch.cat([cache, x], dim=2)
# Update cache
cache = x[..., -left_pad:]
x_causal = self.causal_conv(x)
assert x_causal.shape == (batch_size, num_channels, seq_len)
x_chunk = x[..., left_pad:]
x_chunk = self.chunkwise_conv(x_chunk) # does not change shape
chunk_scale = self._get_chunk_scale(chunk_size=seq_len)
x_chunk = x_chunk * chunk_scale
return x_chunk + x_causal, cache
def penalize_abs_values_gt(
x: Tensor, limit: float, penalty: float, name: str = None
) -> Tensor:
"""
Returns x unmodified, but in backprop will put a penalty for the excess of
the absolute values of elements of x over the limit "limit". E.g. if
limit == 10.0, then if x has any values over 10 it will get a penalty.
Caution: the value of this penalty will be affected by grad scaling used
in automatic mixed precision training. For this reasons we use this,
it shouldn't really matter, or may even be helpful; we just use this
to disallow really implausible values of scores to be given to softmax.
The name is for randomly printed debug info.
"""
x_sign = x.sign()
over_limit = (x.abs() - limit) > 0
# The following is a memory efficient way to penalize the absolute values of
# x that's over the limit. (The memory efficiency comes when you think
# about which items torch needs to cache for the autograd, and which ones it
# can throw away). The numerical value of aux_loss as computed here will
# actually be larger than it should be, by limit * over_limit.sum(), but it
# has the same derivative as the real aux_loss which is penalty * (x.abs() -
# limit).relu().
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x)
# note: we don't do sum() here on aux)_loss, but it's as if we had done
# sum() due to how with_loss() works.
x = with_loss(x, aux_loss, name)
# you must use x for something, or this will be ineffective.
return x
class WithLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, y: Tensor, name: str):
ctx.y_shape = y.shape
if random.random() < 0.002 and name is not None:
loss_sum = y.sum().item()
logging.info(f"WithLoss: name={name}, loss-sum={loss_sum:.3e}")
return x
@staticmethod
def backward(ctx, ans_grad: Tensor):
return (
ans_grad,
torch.ones(ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device),
None,
)
def with_loss(x, y, name):
# returns x but adds y.sum() to the loss function.
return WithLoss.apply(x, y, name)
class ScaleGradFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, alpha: float) -> Tensor:
ctx.alpha = alpha
return x
@staticmethod
def backward(ctx, grad: Tensor):
return grad * ctx.alpha, None
def scale_grad(x: Tensor, alpha: float):
return ScaleGradFunction.apply(x, alpha)
class ScaleGrad(nn.Module):
def __init__(self, alpha: float):
super().__init__()
self.alpha = alpha
def forward(self, x: Tensor) -> Tensor:
if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training:
return x
return scale_grad(x, self.alpha)
class LimitParamValue(torch.autograd.Function):
@staticmethod
def forward(ctx, x: Tensor, min: float, max: float):
ctx.save_for_backward(x)
assert max >= min
ctx.min = min
ctx.max = max
return x
@staticmethod
def backward(ctx, x_grad: Tensor):
(x,) = ctx.saved_tensors
# where x < ctx.min, ensure all grads are negative (this will tend to make
# x more positive).
x_grad = x_grad * torch.where(
torch.logical_and(x_grad > 0, x < ctx.min), -1.0, 1.0
)
# where x > ctx.max, ensure all grads are positive (this will tend to make
# x more negative).
x_grad *= torch.where(torch.logical_and(x_grad < 0, x > ctx.max), -1.0, 1.0)
return x_grad, None, None
def limit_param_value(
x: Tensor, min: float, max: float, prob: float = 0.6, training: bool = True
):
# You apply this to (typically) an nn.Parameter during training to ensure that its
# (elements mostly) stays within a supplied range. This is done by modifying the
# gradients in backprop.
# It's not necessary to do this on every batch: do it only some of the time,
# to save a little time.
if training and random.random() < prob:
return LimitParamValue.apply(x, min, max)
else:
return x
def _no_op(x: Tensor) -> Tensor:
if torch.jit.is_scripting() or torch.jit.is_tracing():
return x
else:
# a no-op function that will have a node in the autograd graph,
# to avoid certain bugs relating to backward hooks
return x.chunk(1, dim=-1)[0]
class Identity(torch.nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return _no_op(x)
# Dropout2 is just like normal dropout, except it supports schedules on the dropout rates.
class Dropout2(nn.Module):
def __init__(self, p: FloatLike):
super().__init__()
self.p = p
def forward(self, x: Tensor) -> Tensor:
return torch.nn.functional.dropout(x, p=float(self.p), training=self.training)
class MulForDropout3(torch.autograd.Function):
# returns (x * y * alpha) where alpha is a float and y doesn't require
# grad and is zero-or-one.
@staticmethod
@custom_fwd
def forward(ctx, x, y, alpha):
assert not y.requires_grad
ans = x * y * alpha
ctx.save_for_backward(ans)
ctx.alpha = alpha
return ans
@staticmethod
@custom_bwd
def backward(ctx, ans_grad):
(ans,) = ctx.saved_tensors
x_grad = ctx.alpha * ans_grad * (ans != 0)
return x_grad, None, None
# Dropout3 is just like normal dropout, except it supports schedules on the dropout rates,
# and it lets you choose one dimension to share the dropout mask over
class Dropout3(nn.Module):
def __init__(self, p: FloatLike, shared_dim: int):
super().__init__()
self.p = p
self.shared_dim = shared_dim
def forward(self, x: Tensor) -> Tensor:
p = float(self.p)
if not self.training or p == 0:
return _no_op(x)
scale = 1.0 / (1 - p)
rand_shape = list(x.shape)
rand_shape[self.shared_dim] = 1
mask = torch.rand(*rand_shape, device=x.device) > p
ans = MulForDropout3.apply(x, mask, scale)
return ans
def convert_num_channels(x: Tensor, num_channels: int) -> Tensor:
if num_channels <= x.shape[-1]:
return x[..., :num_channels]
else:
shape = list(x.shape)
shape[-1] = num_channels - shape[-1]
zeros = torch.zeros(shape, dtype=x.dtype, device=x.device)
return torch.cat((x, zeros), dim=-1)
def _test_softmax():
a = torch.randn(2, 10, dtype=torch.float64)
b = a.clone()
a.requires_grad = True
b.requires_grad = True
a.softmax(dim=1)[:, 0].sum().backward()
print("a grad = ", a.grad)
softmax(b, dim=1)[:, 0].sum().backward()
print("b grad = ", b.grad)
assert torch.allclose(a.grad, b.grad)
def _test_piecewise_linear():
p = PiecewiseLinear((0, 10.0))
for x in [-100, 0, 100]:
assert p(x) == 10.0
p = PiecewiseLinear((0, 10.0), (1, 0.0))
for x, y in [(-100, 10.0), (0, 10.0), (0.5, 5.0), (1, 0.0), (2, 0.0)]:
print("x, y = ", x, y)
assert p(x) == y, (x, p(x), y)
q = PiecewiseLinear((0.5, 15.0), (0.6, 1.0))
x_vals = [-1.0, 0.0, 0.1, 0.2, 0.5, 0.6, 0.7, 0.9, 1.0, 2.0]
pq = p.max(q)
for x in x_vals:
y1 = max(p(x), q(x))
y2 = pq(x)
assert abs(y1 - y2) < 0.001
pq = p.min(q)
for x in x_vals:
y1 = min(p(x), q(x))
y2 = pq(x)
assert abs(y1 - y2) < 0.001
pq = p + q
for x in x_vals:
y1 = p(x) + q(x)
y2 = pq(x)
assert abs(y1 - y2) < 0.001
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
_test_piecewise_linear()
_test_softmax()