mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
116 lines
3.9 KiB
Bash
Executable File
116 lines
3.9 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
# run step 0 to step 5 by default
|
|
stage=-1
|
|
stop_stage=4
|
|
|
|
dl_dir=$PWD/download
|
|
fbank_dir=data/fbank
|
|
|
|
# we assume that you have your downloaded the AudioSet and placed
|
|
# it under $dl_dir/audioset, the folder structure should look like
|
|
# this:
|
|
# - $dl_dir/audioset
|
|
# - balanced
|
|
# - eval
|
|
# - unbalanced
|
|
# If you haven't downloaded the AudioSet, please refer to
|
|
# https://github.com/RicherMans/SAT/blob/main/datasets/audioset/1_download_audioset.sh.
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "Running prepare.sh"
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
|
log "Stage 0: Download the necessary csv files"
|
|
if [ ! -e $dl_dir/audioset/.csv.done]; then
|
|
wget --continue "http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/class_labels_indices.csv" -O "${dl_dir}/audioset/class_labels_indices.csv"
|
|
wget --continue http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/balanced_train_segments.csv -O "${dl_dir}/audioset/balanced_train_segments.csv"
|
|
wget --continue http://storage.googleapis.com/us_audioset/youtube_corpus/v1/csv/eval_segments.csv -O "${dl_dir}/audioset/eval_segments.csv"
|
|
touch $dl_dir/audioset/.csv.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Construct the audioset manifest and compute the fbank features for balanced set"
|
|
if [! -e $fbank_dir/.balanced.done]; then
|
|
python local/generate_audioset_manifest.py \
|
|
--dataset-dir $dl_dir/audioset \
|
|
--split balanced \
|
|
--feat-output-dir $fbank_dir
|
|
touch $fbank_dir/.balanced.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Construct the audioset manifest and compute the fbank features for unbalanced set"
|
|
fbank_dir=data/fbank
|
|
if [! -e $fbank_dir/.unbalanced.done]; then
|
|
python local/generate_audioset_manifest.py \
|
|
--dataset-dir $dl_dir/audioset \
|
|
--split unbalanced \
|
|
--feat-output-dir $fbank_dir
|
|
touch $fbank_dir/.unbalanced.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Construct the audioset manifest and compute the fbank features for eval set"
|
|
fbank_dir=data/fbank
|
|
if [! -e $fbank_dir/.eval.done]; then
|
|
python local/generate_audioset_manifest.py \
|
|
--dataset-dir $dl_dir/audioset \
|
|
--split eval \
|
|
--feat-output-dir $fbank_dir
|
|
touch $fbank_dir/.eval.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to $dl_dir/musan
|
|
mkdir -p data/manifests
|
|
if [ ! -e data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
if [ ! -e data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
# The following stages are required to do weighted-sampling training
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare for weighted-sampling training"
|
|
if [ ! -e $fbank_dir/cuts_audioset_full.jsonl.gz ]; then
|
|
lhotse combine $fbank_dir/cuts_audioset_balanced.jsonl.gz $fbank_dir/cuts_audioset_unbalanced.jsonl.gz $fbank_dir/cuts_audioset_full.jsonl.gz
|
|
fi
|
|
python ./local/compute_weight.py \
|
|
--input-manifest $fbank_dir/cuts_audioset_full.jsonl.gz \
|
|
--output $fbank_dir/sampling_weights_full.txt
|
|
fi
|