mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-10 18:42:19 +00:00
290 lines
8.0 KiB
Python
Executable File
290 lines
8.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Yifan Yang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import fairseq
|
|
import joblib
|
|
import numpy as np
|
|
import torch
|
|
from lhotse import CutSet, SupervisionSegment
|
|
from lhotse.utils import fastcopy
|
|
from tqdm import tqdm
|
|
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
|
|
|
|
|
class ApplyKmeans(object):
|
|
def __init__(self, km_path):
|
|
self.km_model = joblib.load(km_path)
|
|
self.C_np = self.km_model.cluster_centers_.transpose()
|
|
self.Cnorm_np = (self.C_np**2).sum(0, keepdims=True)
|
|
|
|
self.C = torch.from_numpy(self.C_np)
|
|
self.Cnorm = torch.from_numpy(self.Cnorm_np)
|
|
if torch.cuda.is_available():
|
|
self.C = self.C.cuda()
|
|
self.Cnorm = self.Cnorm.cuda()
|
|
|
|
def __call__(self, x):
|
|
if isinstance(x, torch.Tensor):
|
|
dist = (
|
|
x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm
|
|
)
|
|
return dist.argmin(dim=1).cpu().numpy()
|
|
else:
|
|
dist = (
|
|
(x**2).sum(1, keepdims=True)
|
|
- 2 * np.matmul(x, self.C_np)
|
|
+ self.Cnorm_np
|
|
)
|
|
return np.argmin(dist, axis=1)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--subset",
|
|
type=str,
|
|
default="small",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model-path",
|
|
type=str,
|
|
default="download/hubert_base_ls960.pt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--kmeans-model-path",
|
|
type=str,
|
|
default="download/hubert_base_ls960_L9_km500.bin",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start",
|
|
type=int,
|
|
default=0,
|
|
help="Process pieces starting from this number (inclusive).",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--stop",
|
|
type=int,
|
|
default=-1,
|
|
help="Stop processing pieces until this number (exclusive).",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--window-duration",
|
|
type=float,
|
|
default=300.0,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--shift-duration",
|
|
type=float,
|
|
default=250.0,
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
@torch.no_grad()
|
|
def extract_and_save_one_cuts(
|
|
raw_cuts_path,
|
|
cuts_path,
|
|
model,
|
|
apply_kmeans,
|
|
do_normalize,
|
|
window_duration,
|
|
shift_duration,
|
|
):
|
|
logging.info(f"Loading {raw_cuts_path}")
|
|
cut_set = CutSet.from_file(raw_cuts_path)
|
|
|
|
logging.info("Extracting kmeans")
|
|
cuts = []
|
|
|
|
assert window_duration >= shift_duration
|
|
window_size = int(window_duration * 16000)
|
|
shift_size = int(shift_duration * 16000)
|
|
overlap_size = window_size - shift_size
|
|
out_overlap_size = get_out_length(overlap_size)
|
|
|
|
for cut in tqdm(cut_set):
|
|
assert cut.sampling_rate == 16000, f"Sampling rate: {cut.sampling_rate}"
|
|
|
|
audio = cut.load_audio()
|
|
|
|
T = audio.shape[1]
|
|
start = 0
|
|
kmeans = []
|
|
while start < T:
|
|
real_window_size = min(window_size, T - start)
|
|
audio_window = audio[:, start : start + real_window_size]
|
|
|
|
x = (
|
|
torch.from_numpy(audio_window)
|
|
.float()
|
|
.to(next(model.parameters()).device)
|
|
)
|
|
if do_normalize:
|
|
x = torch.nn.functional.layer_norm(x, x.shape)
|
|
|
|
feature, _ = model.extract_features(
|
|
source=x,
|
|
padding_mask=None,
|
|
mask=False,
|
|
output_layer=9,
|
|
)
|
|
feature = feature.squeeze(0)
|
|
|
|
current_kmeans = apply_kmeans(feature).tolist()
|
|
|
|
if start == 0:
|
|
kmeans.extend(current_kmeans)
|
|
else:
|
|
kmeans.extend(current_kmeans[out_overlap_size:])
|
|
|
|
if T - start <= window_size:
|
|
break
|
|
|
|
start += shift_size
|
|
|
|
kmeans = " ".join(map(str, kmeans))
|
|
|
|
cut_with_kmeans = fastcopy(
|
|
cut,
|
|
custom={"kmeans": kmeans},
|
|
)
|
|
cuts.append(cut_with_kmeans)
|
|
|
|
cuts = CutSet(cuts)
|
|
|
|
logging.info(f"Saving to {cuts_path}")
|
|
cuts.to_file(cuts_path)
|
|
|
|
|
|
def extract_kmeans(args):
|
|
assert args.subset in ("small", "medium", "large"), f"{args.subset}"
|
|
|
|
output_dir = (
|
|
f"data/kmeans/{args.subset}_split" if args.subset != "small" else "data/kmeans"
|
|
)
|
|
output_dir = Path(output_dir)
|
|
assert output_dir.exists(), f"{output_dir} does not exist!"
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
logging.info(f"device: {device}")
|
|
|
|
prefix = "librilight"
|
|
|
|
apply_kmeans = ApplyKmeans(args.kmeans_model_path)
|
|
model, _, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
|
[args.model_path]
|
|
)
|
|
model = model[0].eval().to(device)
|
|
do_normalize = task.cfg.normalize
|
|
|
|
window_duration = args.window_duration
|
|
shift_duration = args.shift_duration
|
|
|
|
if args.subset == "small":
|
|
cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.jsonl.gz"
|
|
if cuts_path.is_file():
|
|
logging.info(f"{cuts_path} exists - skipping")
|
|
return
|
|
|
|
raw_cuts_path = output_dir / f"{prefix}_cuts_{args.subset}_raw.jsonl.gz"
|
|
if not raw_cuts_path.is_file():
|
|
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
|
return
|
|
|
|
extract_and_save_one_cuts(
|
|
raw_cuts_path,
|
|
cuts_path,
|
|
model,
|
|
apply_kmeans,
|
|
do_normalize,
|
|
window_duration,
|
|
shift_duration,
|
|
)
|
|
else:
|
|
num_digits = 8 # num_digits is fixed by lhotse split-lazy
|
|
start = args.start
|
|
stop = args.stop
|
|
assert stop > start, "stop must be larger than start!"
|
|
|
|
for i in range(start, stop):
|
|
idx = f"{i}".zfill(num_digits)
|
|
logging.info(f"Processing {idx}/{stop - 1}")
|
|
|
|
cuts_path = output_dir / f"{prefix}_cuts_{args.subset}.{idx}.jsonl.gz"
|
|
if cuts_path.is_file():
|
|
logging.info(f"{cuts_path} exists - skipping")
|
|
continue
|
|
|
|
raw_cuts_path = (
|
|
output_dir / f"{prefix}_cuts_{args.subset}_raw.{idx}.jsonl.gz"
|
|
)
|
|
if not raw_cuts_path.is_file():
|
|
logging.info(f"{raw_cuts_path} does not exist - skipping it")
|
|
continue
|
|
|
|
extract_and_save_one_cuts(
|
|
raw_cuts_path,
|
|
cuts_path,
|
|
model,
|
|
apply_kmeans,
|
|
do_normalize,
|
|
window_duration,
|
|
shift_duration,
|
|
)
|
|
|
|
|
|
def get_out_length(T):
|
|
conv_layers = [(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512, 2, 2)] * 2
|
|
for i, (out_channels, kernel_size, stride) in enumerate(conv_layers):
|
|
T = math.floor((T - kernel_size) / stride) + 1
|
|
|
|
return max(0, T)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
args = get_args()
|
|
logging.info(vars(args))
|
|
extract_kmeans(args)
|