mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Fix an error in TDNN-LSTM training. * WIP: Refactoring * Refactor transformer.py * Remove unused code. * Minor fixes. * Fix decoder padding mask. * Add MMI training with word pieces. * Remove unused files. * Minor fixes. * Refactoring. * Minor fixes. * Use pre-computed alignments in LF-MMI training. * Minor fixes. * Update decoding script. * Add doc about how to check and use extracted alignments. * Fix style issues. * Fix typos. * Fix style issues. * Disable macOS tests for now.
838 lines
26 KiB
Python
Executable File
838 lines
26 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Dict, Optional
|
|
|
|
import k2
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from asr_datamodule import LibriSpeechAsrDataModule
|
|
from conformer import Conformer
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from transformer import Noam
|
|
|
|
from icefall.ali import (
|
|
convert_alignments_to_tensor,
|
|
load_alignments,
|
|
lookup_alignments,
|
|
)
|
|
from icefall.checkpoint import load_checkpoint
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.mmi import LFMMILoss
|
|
from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
encode_supervisions,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=50,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=0,
|
|
help="""Resume training from from this epoch.
|
|
If it is positive, it will load checkpoint from
|
|
conformer_mmi/exp/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ali-dir",
|
|
type=str,
|
|
default="data/ali_500",
|
|
help="""This folder is expected to contain
|
|
two files, train-960.pt and valid.pt, which
|
|
contain framewise alignment information for
|
|
the training set and validation set.
|
|
""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- exp_dir: It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
|
|
- lang_dir: It contains language related input files such as
|
|
"lexicon.txt"
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- subsampling_factor: The subsampling factor for the model.
|
|
|
|
- use_feat_batchnorm: Whether to do batch normalization for the
|
|
input features.
|
|
|
|
- attention_dim: Hidden dim for multi-head attention model.
|
|
|
|
- head: Number of heads of multi-head attention model.
|
|
|
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
|
|
|
- weight_decay: The weight_decay for the optimizer.
|
|
|
|
- lr_factor: The lr_factor for Noam optimizer.
|
|
|
|
- warm_step: The warm_step for Noam optimizer.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"exp_dir": Path("conformer_mmi/exp_500_with_attention"),
|
|
"lang_dir": Path("data/lang_bpe_500"),
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 50,
|
|
"reset_interval": 200,
|
|
"valid_interval": 3000,
|
|
# parameters for conformer
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4,
|
|
"use_feat_batchnorm": True,
|
|
"attention_dim": 512,
|
|
"nhead": 8,
|
|
# parameters for loss
|
|
"beam_size": 6, # will change it to 8 after some batches (see code)
|
|
"reduction": "sum",
|
|
"use_double_scores": True,
|
|
# "att_rate": 0.0,
|
|
# "num_decoder_layers": 0,
|
|
"att_rate": 0.7,
|
|
"num_decoder_layers": 6,
|
|
# parameters for Noam
|
|
"weight_decay": 1e-6,
|
|
"lr_factor": 5.0,
|
|
"warm_step": 80000,
|
|
"use_pruned_intersect": False,
|
|
"den_scale": 1.0,
|
|
# use alignments before this number of batches
|
|
"use_ali_until": 13000,
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
) -> None:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_epoch is positive, it will load the checkpoint from
|
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
|
|
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The learning rate scheduler we are using.
|
|
Returns:
|
|
Return None.
|
|
"""
|
|
if params.start_epoch <= 0:
|
|
return
|
|
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
graph_compiler: MmiTrainingGraphCompiler,
|
|
is_training: bool,
|
|
ali: Optional[Dict[str, torch.Tensor]],
|
|
):
|
|
"""
|
|
Compute LF-MMI loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Conformer in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
graph_compiler:
|
|
It is used to build a decoding graph from a ctc topo and training
|
|
transcript. The training transcript is contained in the given `batch`,
|
|
while the ctc topo is built when this compiler is instantiated.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
ali:
|
|
Precomputed alignments.
|
|
"""
|
|
device = graph_compiler.device
|
|
feature = batch["inputs"]
|
|
# at entry, feature is (N, T, C)
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
supervisions = batch["supervisions"]
|
|
with torch.set_grad_enabled(is_training):
|
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
|
# nnet_output is (N, T, C)
|
|
|
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
|
# different duration in decreasing order, required by
|
|
# `k2.intersect_dense` called in `LFMMILoss.forward()`
|
|
supervision_segments, texts = encode_supervisions(
|
|
supervisions, subsampling_factor=params.subsampling_factor
|
|
)
|
|
|
|
if ali is not None and params.batch_idx_train < params.use_ali_until:
|
|
cut_ids = [cut.id for cut in supervisions["cut"]]
|
|
|
|
# As encode_supervisions reorders cuts, we need
|
|
# also to reorder cut IDs here
|
|
new2old = supervision_segments[:, 0].tolist()
|
|
cut_ids = [cut_ids[i] for i in new2old]
|
|
|
|
# Check that new2old is just a permutation,
|
|
# i.e., each cut contains only one utterance
|
|
new2old.sort()
|
|
assert new2old == torch.arange(len(new2old)).tolist()
|
|
mask = lookup_alignments(
|
|
cut_ids=cut_ids,
|
|
alignments=ali,
|
|
num_classes=nnet_output.shape[2],
|
|
).to(nnet_output)
|
|
|
|
min_len = min(nnet_output.shape[1], mask.shape[1])
|
|
ali_scale = 500.0 / (params.batch_idx_train + 500)
|
|
|
|
nnet_output = nnet_output.clone()
|
|
nnet_output[:, :min_len, :] += ali_scale * mask[:, :min_len, :]
|
|
|
|
if (
|
|
params.batch_idx_train > params.use_ali_until
|
|
and params.beam_size < 8
|
|
):
|
|
# logging.info("Change beam size to 8")
|
|
params.beam_size = 8
|
|
else:
|
|
params.beam_size = 6
|
|
|
|
loss_fn = LFMMILoss(
|
|
graph_compiler=graph_compiler,
|
|
use_pruned_intersect=params.use_pruned_intersect,
|
|
den_scale=params.den_scale,
|
|
beam_size=params.beam_size,
|
|
)
|
|
|
|
dense_fsa_vec = k2.DenseFsaVec(
|
|
nnet_output,
|
|
supervision_segments,
|
|
allow_truncate=params.subsampling_factor - 1,
|
|
)
|
|
mmi_loss = loss_fn(dense_fsa_vec=dense_fsa_vec, texts=texts)
|
|
|
|
if params.att_rate != 0.0:
|
|
token_ids = graph_compiler.texts_to_ids(texts)
|
|
with torch.set_grad_enabled(is_training):
|
|
if hasattr(model, "module"):
|
|
att_loss = model.module.decoder_forward(
|
|
encoder_memory,
|
|
memory_mask,
|
|
token_ids=token_ids,
|
|
sos_id=graph_compiler.sos_id,
|
|
eos_id=graph_compiler.eos_id,
|
|
)
|
|
else:
|
|
att_loss = model.decoder_forward(
|
|
encoder_memory,
|
|
memory_mask,
|
|
token_ids=token_ids,
|
|
sos_id=graph_compiler.sos_id,
|
|
eos_id=graph_compiler.eos_id,
|
|
)
|
|
loss = (1.0 - params.att_rate) * mmi_loss + params.att_rate * att_loss
|
|
else:
|
|
loss = mmi_loss
|
|
att_loss = torch.tensor([0])
|
|
|
|
# train_frames and valid_frames are used for printing.
|
|
if is_training:
|
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
|
else:
|
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
return loss, mmi_loss.detach(), att_loss.detach()
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
graph_compiler: MmiTrainingGraphCompiler,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
ali: Optional[Dict[str, torch.Tensor]] = None,
|
|
) -> None:
|
|
"""Run the validation process. The validation loss
|
|
is saved in `params.valid_loss`.
|
|
"""
|
|
model.eval()
|
|
|
|
tot_loss = 0.0
|
|
tot_mmi_loss = 0.0
|
|
tot_att_loss = 0.0
|
|
tot_frames = 0.0
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
loss, mmi_loss, att_loss = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
graph_compiler=graph_compiler,
|
|
is_training=False,
|
|
ali=ali,
|
|
)
|
|
assert loss.requires_grad is False
|
|
assert mmi_loss.requires_grad is False
|
|
assert att_loss.requires_grad is False
|
|
|
|
loss_cpu = loss.detach().cpu().item()
|
|
tot_loss += loss_cpu
|
|
|
|
tot_mmi_loss += mmi_loss.detach().cpu().item()
|
|
tot_att_loss += att_loss.detach().cpu().item()
|
|
|
|
tot_frames += params.valid_frames
|
|
|
|
if world_size > 1:
|
|
s = torch.tensor(
|
|
[tot_loss, tot_mmi_loss, tot_att_loss, tot_frames],
|
|
device=loss.device,
|
|
)
|
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
|
s = s.cpu().tolist()
|
|
tot_loss = s[0]
|
|
tot_mmi_loss = s[1]
|
|
tot_att_loss = s[2]
|
|
tot_frames = s[3]
|
|
|
|
params.valid_loss = tot_loss / tot_frames
|
|
params.valid_mmi_loss = tot_mmi_loss / tot_frames
|
|
params.valid_att_loss = tot_att_loss / tot_frames
|
|
|
|
if params.valid_loss < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = params.valid_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
graph_compiler: MmiTrainingGraphCompiler,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
train_ali: Optional[Dict[str, torch.Tensor]],
|
|
valid_ali: Optional[Dict[str, torch.Tensor]],
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
graph_compiler:
|
|
It is used to convert transcripts to FSAs.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
train_ali:
|
|
Precomputed alignments for the training set.
|
|
valid_ali:
|
|
Precomputed alignments for the validation set.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = 0.0 # sum of losses over all batches
|
|
tot_mmi_loss = 0.0
|
|
tot_att_loss = 0.0
|
|
|
|
tot_frames = 0.0 # sum of frames over all batches
|
|
params.tot_loss = 0.0
|
|
params.tot_frames = 0.0
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
loss, mmi_loss, att_loss = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
graph_compiler=graph_compiler,
|
|
is_training=True,
|
|
ali=train_ali,
|
|
)
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
|
optimizer.step()
|
|
|
|
loss_cpu = loss.detach().cpu().item()
|
|
mmi_loss_cpu = mmi_loss.detach().cpu().item()
|
|
att_loss_cpu = att_loss.detach().cpu().item()
|
|
|
|
tot_frames += params.train_frames
|
|
tot_loss += loss_cpu
|
|
tot_mmi_loss += mmi_loss_cpu
|
|
tot_att_loss += att_loss_cpu
|
|
|
|
params.tot_frames += params.train_frames
|
|
params.tot_loss += loss_cpu
|
|
|
|
tot_avg_loss = tot_loss / tot_frames
|
|
tot_avg_mmi_loss = tot_mmi_loss / tot_frames
|
|
tot_avg_att_loss = tot_att_loss / tot_frames
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
|
f"batch avg mmi loss {mmi_loss_cpu/params.train_frames:.4f}, "
|
|
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
|
f"total avg mmiloss: {tot_avg_mmi_loss:.4f}, "
|
|
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
|
f"batch size: {batch_size}"
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/current_mmi_loss",
|
|
mmi_loss_cpu / params.train_frames,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/current_att_loss",
|
|
att_loss_cpu / params.train_frames,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/current_loss",
|
|
loss_cpu / params.train_frames,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/tot_avg_mmi_loss",
|
|
tot_avg_mmi_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
tb_writer.add_scalar(
|
|
"train/tot_avg_att_loss",
|
|
tot_avg_att_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/tot_avg_loss",
|
|
tot_avg_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
|
tot_loss = 0.0 # sum of losses over all batches
|
|
tot_mmi_loss = 0.0
|
|
tot_att_loss = 0.0
|
|
|
|
tot_frames = 0.0 # sum of frames over all batches
|
|
|
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
|
compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
ali=valid_ali,
|
|
)
|
|
model.train()
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"valid mmi loss {params.valid_mmi_loss:.4f},"
|
|
f"valid att loss {params.valid_att_loss:.4f},"
|
|
f"valid loss {params.valid_loss:.4f},"
|
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
|
f"best valid epoch: {params.best_valid_epoch}"
|
|
)
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/valid_mmi_loss",
|
|
params.valid_mmi_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/valid_att_loss",
|
|
params.valid_att_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/valid_loss",
|
|
params.valid_loss,
|
|
params.batch_idx_train,
|
|
)
|
|
|
|
params.train_loss = params.tot_loss / params.tot_frames
|
|
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(42)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
logging.info(params)
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
|
|
graph_compiler = MmiTrainingGraphCompiler(
|
|
params.lang_dir,
|
|
uniq_filename="lexicon.txt",
|
|
device=device,
|
|
oov="<UNK>",
|
|
sos_id=1,
|
|
eos_id=1,
|
|
)
|
|
|
|
logging.info("About to create model")
|
|
if params.att_rate == 0:
|
|
assert params.num_decoder_layers == 0, f"{params.num_decoder_layers}"
|
|
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
nhead=params.nhead,
|
|
d_model=params.attention_dim,
|
|
num_classes=num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
vgg_frontend=False,
|
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
|
)
|
|
|
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
model = DDP(model, device_ids=[rank])
|
|
|
|
optimizer = Noam(
|
|
model.parameters(),
|
|
model_size=params.attention_dim,
|
|
factor=params.lr_factor,
|
|
warm_step=params.warm_step,
|
|
weight_decay=params.weight_decay,
|
|
)
|
|
|
|
if checkpoints:
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
train_960_ali_filename = Path(params.ali_dir) / "train-960.pt"
|
|
if (
|
|
params.batch_idx_train < params.use_ali_until
|
|
and train_960_ali_filename.is_file()
|
|
):
|
|
logging.info("Use pre-computed alignments")
|
|
subsampling_factor, train_ali = load_alignments(train_960_ali_filename)
|
|
assert subsampling_factor == params.subsampling_factor
|
|
assert len(train_ali) == 843723, f"{len(train_ali)} vs 843723"
|
|
|
|
valid_ali_filename = Path(params.ali_dir) / "valid.pt"
|
|
subsampling_factor, valid_ali = load_alignments(valid_ali_filename)
|
|
assert subsampling_factor == params.subsampling_factor
|
|
|
|
train_ali = convert_alignments_to_tensor(train_ali, device=device)
|
|
valid_ali = convert_alignments_to_tensor(valid_ali, device=device)
|
|
else:
|
|
logging.info("Not using alignments")
|
|
train_ali = None
|
|
valid_ali = None
|
|
|
|
librispeech = LibriSpeechAsrDataModule(args)
|
|
train_dl = librispeech.train_dataloaders()
|
|
valid_dl = librispeech.valid_dataloaders()
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs):
|
|
train_dl.sampler.set_epoch(epoch)
|
|
if (
|
|
params.batch_idx_train >= params.use_ali_until
|
|
and train_ali is not None
|
|
):
|
|
# Delete the alignments to save memory
|
|
train_ali = None
|
|
valid_ali = None
|
|
|
|
cur_lr = optimizer._rate
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
if rank == 0:
|
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
graph_compiler=graph_compiler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
train_ali=train_ali,
|
|
valid_ali=valid_ali,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
)
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|