mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Fix an error in TDNN-LSTM training. * WIP: Refactoring * Refactor transformer.py * Remove unused code. * Minor fixes. * Fix decoder padding mask. * Add MMI training with word pieces. * Remove unused files. * Minor fixes. * Refactoring. * Minor fixes. * Use pre-computed alignments in LF-MMI training. * Minor fixes. * Update decoding script. * Add doc about how to check and use extracted alignments. * Fix style issues. * Fix typos. * Fix style issues. * Disable macOS tests for now.
34 lines
858 B
Python
Executable File
34 lines
858 B
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
from subsampling import Conv2dSubsampling
|
|
from subsampling import VggSubsampling
|
|
import torch
|
|
|
|
|
|
def test_conv2d_subsampling():
|
|
N = 3
|
|
odim = 2
|
|
|
|
for T in range(7, 19):
|
|
for idim in range(7, 20):
|
|
model = Conv2dSubsampling(idim=idim, odim=odim)
|
|
x = torch.empty(N, T, idim)
|
|
y = model(x)
|
|
assert y.shape[0] == N
|
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
|
assert y.shape[2] == odim
|
|
|
|
|
|
def test_vgg_subsampling():
|
|
N = 3
|
|
odim = 2
|
|
|
|
for T in range(7, 19):
|
|
for idim in range(7, 20):
|
|
model = VggSubsampling(idim=idim, odim=odim)
|
|
x = torch.empty(N, T, idim)
|
|
y = model(x)
|
|
assert y.shape[0] == N
|
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
|
assert y.shape[2] == odim
|