mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
119 lines
2.9 KiB
Python
Executable File
119 lines
2.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
"""
|
|
This file is for exporting trained models to a checkpoint
|
|
or to a torchscript model.
|
|
|
|
(1) Generate the checkpoint tdnn/exp/pretrained.pt
|
|
|
|
./tdnn/export.py \
|
|
--epoch 14 \
|
|
--avg 2
|
|
|
|
See ./tdnn/pretrained.py for how to use the generated file.
|
|
|
|
(2) Generate torchscript model tdnn/exp/cpu_jit.pt
|
|
|
|
./tdnn/export.py \
|
|
--epoch 14 \
|
|
--avg 2 \
|
|
--jit 1
|
|
|
|
See ./tdnn/jit_pretrained.py for how to use the generated file.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
|
|
import torch
|
|
from model import Tdnn
|
|
from train import get_params
|
|
|
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=14,
|
|
help="It specifies the checkpoint to use for decoding."
|
|
"Note: Epoch counts from 0.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=2,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch'. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
""",
|
|
)
|
|
return parser
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
logging.info(params)
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
|
|
model = Tdnn(
|
|
num_features=params.feature_dim,
|
|
num_classes=max_token_id + 1, # +1 for the blank symbol
|
|
)
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.load_state_dict(average_checkpoints(filenames))
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit:
|
|
logging.info("Using torch.jit.script")
|
|
model = torch.jit.script(model)
|
|
filename = params.exp_dir / "cpu_jit.pt"
|
|
model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torch.jit.script")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = params.exp_dir / "pretrained.pt"
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|