icefall/egs/ljspeech/TTS/matcha/export_onnx.py
2024-10-29 15:04:04 +08:00

197 lines
5.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
"""
This script exports a Matcha-TTS model to ONNX.
Note that the model outputs fbank. You need to use a vocoder to convert
it to audio. See also ./export_onnx_hifigan.py
"""
import argparse
import json
import logging
from pathlib import Path
from typing import Any, Dict
import onnx
import torch
from tokenizer import Tokenizer
from train import get_model, get_params
from icefall.checkpoint import load_checkpoint
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=4000,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
""",
)
parser.add_argument(
"--exp-dir",
type=Path,
default="matcha/exp-new-3",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--tokens",
type=Path,
default="data/tokens.txt",
)
parser.add_argument(
"--cmvn",
type=str,
default="data/fbank/cmvn.json",
help="""Path to vocabulary.""",
)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
class ModelWrapper(torch.nn.Module):
def __init__(self, model, num_steps: int = 5):
super().__init__()
self.model = model
self.num_steps = num_steps
def forward(
self,
x: torch.Tensor,
x_lengths: torch.Tensor,
temperature: torch.Tensor,
length_scale: torch.Tensor,
) -> torch.Tensor:
"""
Args: :
x: (batch_size, num_tokens), torch.int64
x_lengths: (batch_size,), torch.int64
temperature: (1,), torch.float32
length_scale (1,), torch.float32
Returns:
audio: (batch_size, num_samples)
"""
mel = self.model.synthesise(
x=x,
x_lengths=x_lengths,
n_timesteps=self.num_steps,
temperature=temperature,
length_scale=length_scale,
)["mel"]
# mel: (batch_size, feat_dim, num_frames)
return mel
@torch.inference_mode()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
tokenizer = Tokenizer(params.tokens)
params.blank_id = tokenizer.pad_id
params.vocab_size = tokenizer.vocab_size
params.model_args.n_vocab = params.vocab_size
with open(params.cmvn) as f:
stats = json.load(f)
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
params.data_args.data_statistics.mel_std = stats["fbank_std"]
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
params.model_args.data_statistics.mel_std = stats["fbank_std"]
logging.info(params)
logging.info("About to create model")
model = get_model(params)
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
for num_steps in [2, 3, 4, 5, 6]:
logging.info(f"num_steps: {num_steps}")
wrapper = ModelWrapper(model, num_steps=num_steps)
wrapper.eval()
# Use a large value so the rotary position embedding in the text
# encoder has a large initial length
x = torch.ones(1, 1000, dtype=torch.int64)
x_lengths = torch.tensor([x.shape[1]], dtype=torch.int64)
temperature = torch.tensor([1.0])
length_scale = torch.tensor([1.0])
opset_version = 14
filename = f"model-steps-{num_steps}.onnx"
torch.onnx.export(
wrapper,
(x, x_lengths, temperature, length_scale),
filename,
opset_version=opset_version,
input_names=["x", "x_length", "temperature", "length_scale"],
output_names=["mel"],
dynamic_axes={
"x": {0: "N", 1: "L"},
"x_length": {0: "N"},
"mel": {0: "N", 2: "L"},
},
)
meta_data = {
"model_type": "matcha-tts",
"language": "English",
"voice": "en-us",
"has_espeak": 1,
"n_speakers": 1,
"sample_rate": 22050,
"version": 1,
"model_author": "icefall",
"maintainer": "k2-fsa",
"dataset": "LJ Speech",
"num_ode_steps": num_steps,
}
add_meta_data(filename=filename, meta_data=meta_data)
print(meta_data)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()