mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
197 lines
5.3 KiB
Python
Executable File
197 lines
5.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
|
|
"""
|
|
This script exports a Matcha-TTS model to ONNX.
|
|
Note that the model outputs fbank. You need to use a vocoder to convert
|
|
it to audio. See also ./export_onnx_hifigan.py
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Any, Dict
|
|
|
|
import onnx
|
|
import torch
|
|
from tokenizer import Tokenizer
|
|
from train import get_model, get_params
|
|
|
|
from icefall.checkpoint import load_checkpoint
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=4000,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=Path,
|
|
default="matcha/exp-new-3",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=Path,
|
|
default="data/tokens.txt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--cmvn",
|
|
type=str,
|
|
default="data/fbank/cmvn.json",
|
|
help="""Path to vocabulary.""",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
|
|
"""Add meta data to an ONNX model. It is changed in-place.
|
|
|
|
Args:
|
|
filename:
|
|
Filename of the ONNX model to be changed.
|
|
meta_data:
|
|
Key-value pairs.
|
|
"""
|
|
model = onnx.load(filename)
|
|
|
|
while len(model.metadata_props):
|
|
model.metadata_props.pop()
|
|
|
|
for key, value in meta_data.items():
|
|
meta = model.metadata_props.add()
|
|
meta.key = key
|
|
meta.value = str(value)
|
|
|
|
onnx.save(model, filename)
|
|
|
|
|
|
class ModelWrapper(torch.nn.Module):
|
|
def __init__(self, model, num_steps: int = 5):
|
|
super().__init__()
|
|
self.model = model
|
|
self.num_steps = num_steps
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lengths: torch.Tensor,
|
|
temperature: torch.Tensor,
|
|
length_scale: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args: :
|
|
x: (batch_size, num_tokens), torch.int64
|
|
x_lengths: (batch_size,), torch.int64
|
|
temperature: (1,), torch.float32
|
|
length_scale (1,), torch.float32
|
|
Returns:
|
|
audio: (batch_size, num_samples)
|
|
|
|
"""
|
|
mel = self.model.synthesise(
|
|
x=x,
|
|
x_lengths=x_lengths,
|
|
n_timesteps=self.num_steps,
|
|
temperature=temperature,
|
|
length_scale=length_scale,
|
|
)["mel"]
|
|
# mel: (batch_size, feat_dim, num_frames)
|
|
|
|
return mel
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
tokenizer = Tokenizer(params.tokens)
|
|
params.blank_id = tokenizer.pad_id
|
|
params.vocab_size = tokenizer.vocab_size
|
|
params.model_args.n_vocab = params.vocab_size
|
|
|
|
with open(params.cmvn) as f:
|
|
stats = json.load(f)
|
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
|
|
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
|
|
for num_steps in [2, 3, 4, 5, 6]:
|
|
logging.info(f"num_steps: {num_steps}")
|
|
wrapper = ModelWrapper(model, num_steps=num_steps)
|
|
wrapper.eval()
|
|
|
|
# Use a large value so the rotary position embedding in the text
|
|
# encoder has a large initial length
|
|
x = torch.ones(1, 1000, dtype=torch.int64)
|
|
x_lengths = torch.tensor([x.shape[1]], dtype=torch.int64)
|
|
temperature = torch.tensor([1.0])
|
|
length_scale = torch.tensor([1.0])
|
|
|
|
opset_version = 14
|
|
filename = f"model-steps-{num_steps}.onnx"
|
|
torch.onnx.export(
|
|
wrapper,
|
|
(x, x_lengths, temperature, length_scale),
|
|
filename,
|
|
opset_version=opset_version,
|
|
input_names=["x", "x_length", "temperature", "length_scale"],
|
|
output_names=["mel"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "L"},
|
|
"x_length": {0: "N"},
|
|
"mel": {0: "N", 2: "L"},
|
|
},
|
|
)
|
|
|
|
meta_data = {
|
|
"model_type": "matcha-tts",
|
|
"language": "English",
|
|
"voice": "en-us",
|
|
"has_espeak": 1,
|
|
"n_speakers": 1,
|
|
"sample_rate": 22050,
|
|
"version": 1,
|
|
"model_author": "icefall",
|
|
"maintainer": "k2-fsa",
|
|
"dataset": "LJ Speech",
|
|
"num_ode_steps": num_steps,
|
|
}
|
|
add_meta_data(filename=filename, meta_data=meta_data)
|
|
print(meta_data)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|