mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
209 lines
6.1 KiB
Python
Executable File
209 lines
6.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file computes fbank features of the LJSpeech dataset.
|
|
It looks for manifests in the directory data/manifests.
|
|
|
|
The generated fbank features are saved in data/fbank.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from lhotse import CutSet, LilcomChunkyWriter, load_manifest
|
|
from lhotse.audio import RecordingSet
|
|
from lhotse.features.base import FeatureExtractor, register_extractor
|
|
from lhotse.supervision import SupervisionSet
|
|
from lhotse.utils import Seconds, compute_num_frames
|
|
from matcha.audio import mel_spectrogram
|
|
|
|
from icefall.utils import get_executor
|
|
|
|
|
|
@dataclass
|
|
class MyFbankConfig:
|
|
n_fft: int
|
|
n_mels: int
|
|
sampling_rate: int
|
|
hop_length: int
|
|
win_length: int
|
|
f_min: float
|
|
f_max: float
|
|
|
|
|
|
@register_extractor
|
|
class MyFbank(FeatureExtractor):
|
|
|
|
name = "MyFbank"
|
|
config_type = MyFbankConfig
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config=config)
|
|
|
|
@property
|
|
def device(self) -> Union[str, torch.device]:
|
|
return self.config.device
|
|
|
|
def feature_dim(self, sampling_rate: int) -> int:
|
|
return self.config.n_mels
|
|
|
|
def extract(
|
|
self,
|
|
samples: np.ndarray,
|
|
sampling_rate: int,
|
|
) -> torch.Tensor:
|
|
# Check for sampling rate compatibility.
|
|
expected_sr = self.config.sampling_rate
|
|
assert sampling_rate == expected_sr, (
|
|
f"Mismatched sampling rate: extractor expects {expected_sr}, "
|
|
f"got {sampling_rate}"
|
|
)
|
|
samples = torch.from_numpy(samples)
|
|
assert samples.ndim == 2, samples.shape
|
|
assert samples.shape[0] == 1, samples.shape
|
|
|
|
mel = (
|
|
mel_spectrogram(
|
|
samples,
|
|
self.config.n_fft,
|
|
self.config.n_mels,
|
|
self.config.sampling_rate,
|
|
self.config.hop_length,
|
|
self.config.win_length,
|
|
self.config.f_min,
|
|
self.config.f_max,
|
|
center=False,
|
|
)
|
|
.squeeze()
|
|
.t()
|
|
)
|
|
|
|
assert mel.ndim == 2, mel.shape
|
|
assert mel.shape[1] == self.config.n_mels, mel.shape
|
|
|
|
num_frames = compute_num_frames(
|
|
samples.shape[1] / sampling_rate, self.frame_shift, sampling_rate
|
|
)
|
|
|
|
if mel.shape[0] > num_frames:
|
|
mel = mel[:num_frames]
|
|
elif mel.shape[0] < num_frames:
|
|
mel = mel.unsqueeze(0)
|
|
mel = torch.nn.functional.pad(
|
|
mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate"
|
|
).squeeze(0)
|
|
|
|
return mel.numpy()
|
|
|
|
@property
|
|
def frame_shift(self) -> Seconds:
|
|
return self.config.hop_length / self.config.sampling_rate
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-jobs",
|
|
type=int,
|
|
default=4,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
""",
|
|
)
|
|
return parser
|
|
|
|
|
|
def compute_fbank_ljspeech(num_jobs: int):
|
|
src_dir = Path("data/manifests")
|
|
output_dir = Path("data/fbank")
|
|
|
|
if num_jobs < 1:
|
|
num_jobs = os.cpu_count()
|
|
|
|
logging.info(f"num_jobs: {num_jobs}")
|
|
logging.info(f"src_dir: {src_dir}")
|
|
logging.info(f"output_dir: {output_dir}")
|
|
config = MyFbankConfig(
|
|
n_fft=1024,
|
|
n_mels=80,
|
|
sampling_rate=22050,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
f_min=0,
|
|
f_max=8000,
|
|
)
|
|
|
|
prefix = "ljspeech"
|
|
suffix = "jsonl.gz"
|
|
partition = "all"
|
|
|
|
recordings = load_manifest(
|
|
src_dir / f"{prefix}_recordings_{partition}.{suffix}", RecordingSet
|
|
)
|
|
supervisions = load_manifest(
|
|
src_dir / f"{prefix}_supervisions_{partition}.{suffix}", SupervisionSet
|
|
)
|
|
|
|
extractor = MyFbank(config)
|
|
|
|
with get_executor() as ex: # Initialize the executor only once.
|
|
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
|
|
if (output_dir / cuts_filename).is_file():
|
|
logging.info(f"{cuts_filename} already exists - skipping.")
|
|
return
|
|
logging.info(f"Processing {partition}")
|
|
cut_set = CutSet.from_manifests(
|
|
recordings=recordings, supervisions=supervisions
|
|
)
|
|
|
|
cut_set = cut_set.compute_and_store_features(
|
|
extractor=extractor,
|
|
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
|
|
# when an executor is specified, make more partitions
|
|
num_jobs=num_jobs if ex is None else 80,
|
|
executor=ex,
|
|
storage_type=LilcomChunkyWriter,
|
|
)
|
|
cut_set.to_file(output_dir / cuts_filename)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Torch's multithreaded behavior needs to be disabled or
|
|
# it wastes a lot of CPU and slow things down.
|
|
# Do this outside of main() in case it needs to take effect
|
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
|
|
args = get_parser().parse_args()
|
|
compute_fbank_ljspeech(args.num_jobs)
|