icefall/egs/libricss/SURT/local/compute_fbank_librispeech.py
Desh Raj a4402b88e6
SURT multi-talker ASR recipe (#1126)
* merge upstream

* add SURT model and training

* add libricss decoding

* add chunk width randomization

* decode SURT with libricss

* initial commit for zipformer_ctc

* remove unwanted changes

* remove changes to other recipe

* fix zipformer softlink

* fix for JIT export

* add missing file

* fix symbolic links

* update results

* clean commit for SURT recipe

* training libricss surt model

* remove unwanted files

* remove unwanted changes

* remove changes in librispeech

* change some files to symlinks

* remove unwanted changes in utils

* add export script

* add README

* minor fix in README

* add assets for README

* replace some files with symlinks

* remove unused decoding methods

* fix symlink

* address comments from @csukuangfj
2023-07-04 19:25:58 +08:00

112 lines
3.4 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the LibriSpeech dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
from pathlib import Path
import torch
from lhotse import CutSet, LilcomChunkyWriter
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.recipes.utils import read_manifests_if_cached
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
def compute_fbank_librispeech():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_mel_bins = 80
dataset_parts = (
"train-clean-100",
"train-clean-360",
"train-other-500",
)
prefix = "librispeech"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=16000),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
for partition, m in manifests.items():
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
manifest_path=f"{src_dir}/{cuts_filename}",
batch_duration=4000,
num_workers=2,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_librispeech()