icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets
Fangjun Kuang f1abce72f8
Use jsonl for CutSet in the LibriSpeech recipe. (#397)
* Use jsonl for cutsets in the librispeech recipe.

* Use lazy cutset for all recipes.

* More fixes to use lazy CutSet.

* Remove force=True from logging to support Python < 3.8

* Minor fixes.

* Fix style issues.
2022-06-06 10:19:16 +08:00
..
2022-03-02 16:41:14 +08:00
2022-03-02 16:41:14 +08:00
2022-03-02 16:41:14 +08:00
2022-03-02 16:41:14 +08:00
2022-03-02 16:41:14 +08:00
2022-03-02 16:41:14 +08:00

Introduction

The decoder, i.e., the prediction network, is from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419 (Rnn-Transducer with Stateless Prediction Network)

You can use the following command to start the training:

cd egs/librispeech/ASR
./prepare.sh
./prepare_giga_speech.sh

export CUDA_VISIBLE_DEVICES="0,1"

./transducer_stateless_multi_datasets/train.py \
  --world-size 2 \
  --num-epochs 60 \
  --start-epoch 0 \
  --exp-dir transducer_stateless_multi_datasets/exp-100 \
  --full-libri 0 \
  --max-duration 300 \
  --lr-factor 1 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25
  --giga-prob 0.2