mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
753 lines
28 KiB
ReStructuredText
753 lines
28 KiB
ReStructuredText
.. _export_conv_emformer_transducer_models_to_ncnn:
|
|
|
|
Export ConvEmformer transducer models to ncnn
|
|
=============================================
|
|
|
|
We use the pre-trained model from the following repository as an example:
|
|
|
|
- `<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_
|
|
|
|
We will show you step by step how to export it to `ncnn`_ and run it with `sherpa-ncnn`_.
|
|
|
|
.. hint::
|
|
|
|
We use ``Ubuntu 18.04``, ``torch 1.13``, and ``Python 3.8`` for testing.
|
|
|
|
.. caution::
|
|
|
|
Please use a more recent version of PyTorch. For instance, ``torch 1.8``
|
|
may ``not`` work.
|
|
|
|
1. Download the pre-trained model
|
|
---------------------------------
|
|
|
|
.. hint::
|
|
|
|
You can also refer to `<https://k2-fsa.github.io/sherpa/cpp/pretrained_models/online_transducer.html#icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_ to download the pre-trained model.
|
|
|
|
You have to install `git-lfs`_ before you continue.
|
|
|
|
.. code-block:: bash
|
|
|
|
cd egs/librispeech/ASR
|
|
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05
|
|
|
|
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
|
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
|
|
|
cd ..
|
|
|
|
.. note::
|
|
|
|
We downloaded ``exp/pretrained-xxx.pt``, not ``exp/cpu-jit_xxx.pt``.
|
|
|
|
|
|
In the above code, we downloaded the pre-trained model into the directory
|
|
``egs/librispeech/ASR/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05``.
|
|
|
|
.. _export_for_ncnn_install_ncnn_and_pnnx:
|
|
|
|
2. Install ncnn and pnnx
|
|
------------------------
|
|
|
|
.. code-block:: bash
|
|
|
|
# We put ncnn into $HOME/open-source/ncnn
|
|
# You can change it to anywhere you like
|
|
|
|
cd $HOME
|
|
mkdir -p open-source
|
|
cd open-source
|
|
|
|
git clone https://github.com/csukuangfj/ncnn
|
|
cd ncnn
|
|
git submodule update --recursive --init
|
|
|
|
# Note: We don't use "python setup.py install" or "pip install ." here
|
|
|
|
mkdir -p build-wheel
|
|
cd build-wheel
|
|
|
|
cmake \
|
|
-DCMAKE_BUILD_TYPE=Release \
|
|
-DNCNN_PYTHON=ON \
|
|
-DNCNN_BUILD_BENCHMARK=OFF \
|
|
-DNCNN_BUILD_EXAMPLES=OFF \
|
|
-DNCNN_BUILD_TOOLS=ON \
|
|
..
|
|
|
|
make -j4
|
|
|
|
cd ..
|
|
|
|
# Note: $PWD here is $HOME/open-source/ncnn
|
|
|
|
export PYTHONPATH=$PWD/python:$PYTHONPATH
|
|
export PATH=$PWD/tools/pnnx/build/src:$PATH
|
|
export PATH=$PWD/build-wheel/tools/quantize:$PATH
|
|
|
|
# Now build pnnx
|
|
cd tools/pnnx
|
|
mkdir build
|
|
cd build
|
|
cmake ..
|
|
make -j4
|
|
|
|
./src/pnnx
|
|
|
|
Congratulations! You have successfully installed the following components:
|
|
|
|
- ``pnnx``, which is an executable located in
|
|
``$HOME/open-source/ncnn/tools/pnnx/build/src``. We will use
|
|
it to convert models exported by ``torch.jit.trace()``.
|
|
- ``ncnn2int8``, which is an executable located in
|
|
``$HOME/open-source/ncnn/build-wheel/tools/quantize``. We will use
|
|
it to quantize our models to ``int8``.
|
|
- ``ncnn.cpython-38-x86_64-linux-gnu.so``, which is a Python module located
|
|
in ``$HOME/open-source/ncnn/python/ncnn``.
|
|
|
|
.. note::
|
|
|
|
I am using ``Python 3.8``, so it
|
|
is ``ncnn.cpython-38-x86_64-linux-gnu.so``. If you use a different
|
|
version, say, ``Python 3.9``, the name would be
|
|
``ncnn.cpython-39-x86_64-linux-gnu.so``.
|
|
|
|
Also, if you are not using Linux, the file name would also be different.
|
|
But that does not matter. As long as you can compile it, it should work.
|
|
|
|
We have set up ``PYTHONPATH`` so that you can use ``import ncnn`` in your
|
|
Python code. We have also set up ``PATH`` so that you can use
|
|
``pnnx`` and ``ncnn2int8`` later in your terminal.
|
|
|
|
.. caution::
|
|
|
|
Please don't use `<https://github.com/tencent/ncnn>`_.
|
|
We have made some modifications to the official `ncnn`_.
|
|
|
|
We will synchronize `<https://github.com/csukuangfj/ncnn>`_ periodically
|
|
with the official one.
|
|
|
|
3. Export the model via torch.jit.trace()
|
|
-----------------------------------------
|
|
|
|
First, let us rename our pre-trained model:
|
|
|
|
.. code-block::
|
|
|
|
cd egs/librispeech/ASR
|
|
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp
|
|
|
|
ln -s pretrained-epoch-30-avg-10-averaged.pt epoch-30.pt
|
|
|
|
cd ../..
|
|
|
|
Next, we use the following code to export our model:
|
|
|
|
.. code-block:: bash
|
|
|
|
dir=./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/
|
|
|
|
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
|
|
--exp-dir $dir/exp \
|
|
--tokens $dir/data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 1 \
|
|
--use-averaged-model 0 \
|
|
--num-encoder-layers 12 \
|
|
--chunk-length 32 \
|
|
--cnn-module-kernel 31 \
|
|
--left-context-length 32 \
|
|
--right-context-length 8 \
|
|
--memory-size 32 \
|
|
--encoder-dim 512
|
|
|
|
.. caution::
|
|
|
|
If your model has different configuration parameters, please change them accordingly.
|
|
|
|
.. hint::
|
|
|
|
We have renamed our model to ``epoch-30.pt`` so that we can use ``--epoch 30``.
|
|
There is only one pre-trained model, so we use ``--avg 1 --use-averaged-model 0``.
|
|
|
|
If you have trained a model by yourself and if you have all checkpoints
|
|
available, please first use ``decode.py`` to tune ``--epoch --avg``
|
|
and select the best combination with with ``--use-averaged-model 1``.
|
|
|
|
.. note::
|
|
|
|
You will see the following log output:
|
|
|
|
.. literalinclude:: ./code/export-conv-emformer-transducer-for-ncnn-output.txt
|
|
|
|
The log shows the model has ``75490012`` parameters, i.e., ``~75 M``.
|
|
|
|
.. code-block::
|
|
|
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
|
|
|
|
-rw-r--r-- 1 kuangfangjun root 289M Jan 11 12:05 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/pretrained-epoch-30-avg-10-averaged.pt
|
|
|
|
You can see that the file size of the pre-trained model is ``289 MB``, which
|
|
is roughly equal to ``75490012*4/1024/1024 = 287.97 MB``.
|
|
|
|
After running ``conv_emformer_transducer_stateless2/export-for-ncnn.py``,
|
|
we will get the following files:
|
|
|
|
.. code-block:: bash
|
|
|
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*pnnx*
|
|
|
|
-rw-r--r-- 1 kuangfangjun root 1010K Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.pt
|
|
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.pt
|
|
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 12:15 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.pt
|
|
|
|
|
|
.. _conv-emformer-step-4-export-torchscript-model-via-pnnx:
|
|
|
|
4. Export torchscript model via pnnx
|
|
------------------------------------
|
|
|
|
.. hint::
|
|
|
|
Make sure you have set up the ``PATH`` environment variable. Otherwise,
|
|
it will throw an error saying that ``pnnx`` could not be found.
|
|
|
|
Now, it's time to export our models to `ncnn`_ via ``pnnx``.
|
|
|
|
.. code-block::
|
|
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
pnnx ./encoder_jit_trace-pnnx.pt
|
|
pnnx ./decoder_jit_trace-pnnx.pt
|
|
pnnx ./joiner_jit_trace-pnnx.pt
|
|
|
|
It will generate the following files:
|
|
|
|
.. code-block:: bash
|
|
|
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*ncnn*{bin,param}
|
|
|
|
-rw-r--r-- 1 kuangfangjun root 503K Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
|
|
-rw-r--r-- 1 kuangfangjun root 142M Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 12:36 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
|
|
-rw-r--r-- 1 kuangfangjun root 1.5M Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 12:38 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
|
|
|
|
There are two types of files:
|
|
|
|
- ``param``: It is a text file containing the model architectures. You can
|
|
use a text editor to view its content.
|
|
- ``bin``: It is a binary file containing the model parameters.
|
|
|
|
We compare the file sizes of the models below before and after converting via ``pnnx``:
|
|
|
|
.. see https://tableconvert.com/restructuredtext-generator
|
|
|
|
+----------------------------------+------------+
|
|
| File name | File size |
|
|
+==================================+============+
|
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
|
+----------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
|
+----------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
|
+----------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.bin | 142 MB |
|
|
+----------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.ncnn.bin | 503 KB |
|
|
+----------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.bin | 1.5 MB |
|
|
+----------------------------------+------------+
|
|
|
|
You can see that the file sizes of the models after conversion are about one half
|
|
of the models before conversion:
|
|
|
|
- encoder: 283 MB vs 142 MB
|
|
- decoder: 1010 KB vs 503 KB
|
|
- joiner: 3.0 MB vs 1.5 MB
|
|
|
|
The reason is that by default ``pnnx`` converts ``float32`` parameters
|
|
to ``float16``. A ``float32`` parameter occupies 4 bytes, while it is 2 bytes
|
|
for ``float16``. Thus, it is ``twice smaller`` after conversion.
|
|
|
|
.. hint::
|
|
|
|
If you use ``pnnx ./encoder_jit_trace-pnnx.pt fp16=0``, then ``pnnx``
|
|
won't convert ``float32`` to ``float16``.
|
|
|
|
5. Test the exported models in icefall
|
|
--------------------------------------
|
|
|
|
.. note::
|
|
|
|
We assume you have set up the environment variable ``PYTHONPATH`` when
|
|
building `ncnn`_.
|
|
|
|
Now we have successfully converted our pre-trained model to `ncnn`_ format.
|
|
The generated 6 files are what we need. You can use the following code to
|
|
test the converted models:
|
|
|
|
.. code-block:: bash
|
|
|
|
./conv_emformer_transducer_stateless2/streaming-ncnn-decode.py \
|
|
--tokens ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/data/lang_bpe_500/tokens.txt \
|
|
--encoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param \
|
|
--encoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin \
|
|
--decoder-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param \
|
|
--decoder-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin \
|
|
--joiner-param-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param \
|
|
--joiner-bin-filename ./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin \
|
|
./icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/test_wavs/1089-134686-0001.wav
|
|
|
|
.. hint::
|
|
|
|
`ncnn`_ supports only ``batch size == 1``, so ``streaming-ncnn-decode.py`` accepts
|
|
only 1 wave file as input.
|
|
|
|
The output is given below:
|
|
|
|
.. literalinclude:: ./code/test-streaming-ncnn-decode-conv-emformer-transducer-libri.txt
|
|
|
|
Congratulations! You have successfully exported a model from PyTorch to `ncnn`_!
|
|
|
|
|
|
.. _conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn:
|
|
|
|
6. Modify the exported encoder for sherpa-ncnn
|
|
----------------------------------------------
|
|
|
|
In order to use the exported models in `sherpa-ncnn`_, we have to modify
|
|
``encoder_jit_trace-pnnx.ncnn.param``.
|
|
|
|
Let us have a look at the first few lines of ``encoder_jit_trace-pnnx.ncnn.param``:
|
|
|
|
.. code-block::
|
|
|
|
7767517
|
|
1060 1342
|
|
Input in0 0 1 in0
|
|
|
|
**Explanation** of the above three lines:
|
|
|
|
1. ``7767517``, it is a magic number and should not be changed.
|
|
2. ``1060 1342``, the first number ``1060`` specifies the number of layers
|
|
in this file, while ``1342`` specifies the number of intermediate outputs
|
|
of this file
|
|
3. ``Input in0 0 1 in0``, ``Input`` is the layer type of this layer; ``in0``
|
|
is the layer name of this layer; ``0`` means this layer has no input;
|
|
``1`` means this layer has one output; ``in0`` is the output name of
|
|
this layer.
|
|
|
|
We need to add 1 extra line and also increment the number of layers.
|
|
The result looks like below:
|
|
|
|
.. code-block:: bash
|
|
|
|
7767517
|
|
1061 1342
|
|
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
|
|
Input in0 0 1 in0
|
|
|
|
**Explanation**
|
|
|
|
1. ``7767517``, it is still the same
|
|
2. ``1061 1342``, we have added an extra layer, so we need to update ``1060`` to ``1061``.
|
|
We don't need to change ``1342`` since the newly added layer has no inputs or outputs.
|
|
3. ``SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512``
|
|
This line is newly added. Its explanation is given below:
|
|
|
|
- ``SherpaMetaData`` is the type of this layer. Must be ``SherpaMetaData``.
|
|
- ``sherpa_meta_data1`` is the name of this layer. Must be ``sherpa_meta_data1``.
|
|
- ``0 0`` means this layer has no inputs or output. Must be ``0 0``
|
|
- ``0=1``, 0 is the key and 1 is the value. MUST be ``0=1``
|
|
- ``1=12``, 1 is the key and 12 is the value of the
|
|
parameter ``--num-encoder-layers`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``2=32``, 2 is the key and 32 is the value of the
|
|
parameter ``--memory-size`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``3=31``, 3 is the key and 31 is the value of the
|
|
parameter ``--cnn-module-kernel`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``4=8``, 4 is the key and 8 is the value of the
|
|
parameter ``--left-context-length`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``5=32``, 5 is the key and 32 is the value of the
|
|
parameter ``--chunk-length`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``6=8``, 6 is the key and 8 is the value of the
|
|
parameter ``--right-context-length`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
- ``7=512``, 7 is the key and 512 is the value of the
|
|
parameter ``--encoder-dim`` that you provided when running
|
|
``conv_emformer_transducer_stateless2/export-for-ncnn.py``.
|
|
|
|
For ease of reference, we list the key-value pairs that you need to add
|
|
in the following table. If your model has a different setting, please
|
|
change the values for ``SherpaMetaData`` accordingly. Otherwise, you
|
|
will be ``SAD``.
|
|
|
|
+------+-----------------------------+
|
|
| key | value |
|
|
+======+=============================+
|
|
| 0 | 1 (fixed) |
|
|
+------+-----------------------------+
|
|
| 1 | ``--num-encoder-layers`` |
|
|
+------+-----------------------------+
|
|
| 2 | ``--memory-size`` |
|
|
+------+-----------------------------+
|
|
| 3 | ``--cnn-module-kernel`` |
|
|
+------+-----------------------------+
|
|
| 4 | ``--left-context-length`` |
|
|
+------+-----------------------------+
|
|
| 5 | ``--chunk-length`` |
|
|
+------+-----------------------------+
|
|
| 6 | ``--right-context-length`` |
|
|
+------+-----------------------------+
|
|
| 7 | ``--encoder-dim`` |
|
|
+------+-----------------------------+
|
|
|
|
4. ``Input in0 0 1 in0``. No need to change it.
|
|
|
|
.. caution::
|
|
|
|
When you add a new layer ``SherpaMetaData``, please remember to update the
|
|
number of layers. In our case, update ``1060`` to ``1061``. Otherwise,
|
|
you will be SAD later.
|
|
|
|
.. hint::
|
|
|
|
After adding the new layer ``SherpaMetaData``, you cannot use this model
|
|
with ``streaming-ncnn-decode.py`` anymore since ``SherpaMetaData`` is
|
|
supported only in `sherpa-ncnn`_.
|
|
|
|
.. hint::
|
|
|
|
`ncnn`_ is very flexible. You can add new layers to it just by text-editing
|
|
the ``param`` file! You don't need to change the ``bin`` file.
|
|
|
|
Now you can use this model in `sherpa-ncnn`_.
|
|
Please refer to the following documentation:
|
|
|
|
- Linux/macOS/Windows/arm/aarch64: `<https://k2-fsa.github.io/sherpa/ncnn/install/index.html>`_
|
|
- ``Android``: `<https://k2-fsa.github.io/sherpa/ncnn/android/index.html>`_
|
|
- ``iOS``: `<https://k2-fsa.github.io/sherpa/ncnn/ios/index.html>`_
|
|
- Python: `<https://k2-fsa.github.io/sherpa/ncnn/python/index.html>`_
|
|
|
|
We have a list of pre-trained models that have been exported for `sherpa-ncnn`_:
|
|
|
|
- `<https://k2-fsa.github.io/sherpa/ncnn/pretrained_models/index.html>`_
|
|
|
|
You can find more usages there.
|
|
|
|
7. (Optional) int8 quantization with sherpa-ncnn
|
|
------------------------------------------------
|
|
|
|
This step is optional.
|
|
|
|
In this step, we describe how to quantize our model with ``int8``.
|
|
|
|
Change :ref:`conv-emformer-step-4-export-torchscript-model-via-pnnx` to
|
|
disable ``fp16`` when using ``pnnx``:
|
|
|
|
.. code-block::
|
|
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
pnnx ./encoder_jit_trace-pnnx.pt fp16=0
|
|
pnnx ./decoder_jit_trace-pnnx.pt
|
|
pnnx ./joiner_jit_trace-pnnx.pt fp16=0
|
|
|
|
.. note::
|
|
|
|
We add ``fp16=0`` when exporting the encoder and joiner. `ncnn`_ does not
|
|
support quantizing the decoder model yet. We will update this documentation
|
|
once `ncnn`_ supports it. (Maybe in this year, 2023).
|
|
|
|
It will generate the following files
|
|
|
|
.. code-block:: bash
|
|
|
|
ls -lh icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/*_jit_trace-pnnx.ncnn.{param,bin}
|
|
|
|
-rw-r--r-- 1 kuangfangjun root 503K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 437 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/decoder_jit_trace-pnnx.ncnn.param
|
|
-rw-r--r-- 1 kuangfangjun root 283M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 79K Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/encoder_jit_trace-pnnx.ncnn.param
|
|
-rw-r--r-- 1 kuangfangjun root 3.0M Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.bin
|
|
-rw-r--r-- 1 kuangfangjun root 488 Jan 11 15:56 icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/joiner_jit_trace-pnnx.ncnn.param
|
|
|
|
Let us compare again the file sizes:
|
|
|
|
+----------------------------------------+------------+
|
|
| File name | File size |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
|
+----------------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
|
|
+----------------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
|
|
+----------------------------------------+------------+
|
|
|
|
You can see that the file sizes are doubled when we disable ``fp16``.
|
|
|
|
.. note::
|
|
|
|
You can again use ``streaming-ncnn-decode.py`` to test the exported models.
|
|
|
|
Next, follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
|
|
to modify ``encoder_jit_trace-pnnx.ncnn.param``.
|
|
|
|
Change
|
|
|
|
.. code-block:: bash
|
|
|
|
7767517
|
|
1060 1342
|
|
Input in0 0 1 in0
|
|
|
|
to
|
|
|
|
.. code-block:: bash
|
|
|
|
7767517
|
|
1061 1342
|
|
SherpaMetaData sherpa_meta_data1 0 0 0=1 1=12 2=32 3=31 4=8 5=32 6=8 7=512
|
|
Input in0 0 1 in0
|
|
|
|
.. caution::
|
|
|
|
Please follow :ref:`conv-emformer-modify-the-exported-encoder-for-sherpa-ncnn`
|
|
to change the values for ``SherpaMetaData`` if your model uses a different setting.
|
|
|
|
|
|
Next, let us compile `sherpa-ncnn`_ since we will quantize our models within
|
|
`sherpa-ncnn`_.
|
|
|
|
.. code-block:: bash
|
|
|
|
# We will download sherpa-ncnn to $HOME/open-source/
|
|
# You can change it to anywhere you like.
|
|
cd $HOME
|
|
mkdir -p open-source
|
|
|
|
cd open-source
|
|
git clone https://github.com/k2-fsa/sherpa-ncnn
|
|
cd sherpa-ncnn
|
|
mkdir build
|
|
cd build
|
|
cmake ..
|
|
make -j 4
|
|
|
|
./bin/generate-int8-scale-table
|
|
|
|
export PATH=$HOME/open-source/sherpa-ncnn/build/bin:$PATH
|
|
|
|
The output of the above commands are:
|
|
|
|
.. code-block:: bash
|
|
|
|
(py38) kuangfangjun:build$ generate-int8-scale-table
|
|
Please provide 10 arg. Currently given: 1
|
|
Usage:
|
|
generate-int8-scale-table encoder.param encoder.bin decoder.param decoder.bin joiner.param joiner.bin encoder-scale-table.txt joiner-scale-table.txt wave_filenames.txt
|
|
|
|
Each line in wave_filenames.txt is a path to some 16k Hz mono wave file.
|
|
|
|
We need to create a file ``wave_filenames.txt``, in which we need to put
|
|
some calibration wave files. For testing purpose, we put the ``test_wavs``
|
|
from the pre-trained model repository `<https://huggingface.co/Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05>`_
|
|
|
|
.. code-block:: bash
|
|
|
|
cd egs/librispeech/ASR
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
cat <<EOF > wave_filenames.txt
|
|
../test_wavs/1089-134686-0001.wav
|
|
../test_wavs/1221-135766-0001.wav
|
|
../test_wavs/1221-135766-0002.wav
|
|
EOF
|
|
|
|
Now we can calculate the scales needed for quantization with the calibration data:
|
|
|
|
.. code-block:: bash
|
|
|
|
cd egs/librispeech/ASR
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
generate-int8-scale-table \
|
|
./encoder_jit_trace-pnnx.ncnn.param \
|
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
|
./decoder_jit_trace-pnnx.ncnn.param \
|
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
|
./joiner_jit_trace-pnnx.ncnn.param \
|
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
|
./encoder-scale-table.txt \
|
|
./joiner-scale-table.txt \
|
|
./wave_filenames.txt
|
|
|
|
The output logs are in the following:
|
|
|
|
.. literalinclude:: ./code/generate-int-8-scale-table-for-conv-emformer.txt
|
|
|
|
It generates the following two files:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ ls -lh encoder-scale-table.txt joiner-scale-table.txt
|
|
-rw-r--r-- 1 kuangfangjun root 955K Jan 11 17:28 encoder-scale-table.txt
|
|
-rw-r--r-- 1 kuangfangjun root 18K Jan 11 17:28 joiner-scale-table.txt
|
|
|
|
.. caution::
|
|
|
|
Definitely, you need more calibration data to compute the scale table.
|
|
|
|
Finally, let us use the scale table to quantize our models into ``int8``.
|
|
|
|
.. code-block:: bash
|
|
|
|
ncnn2int8
|
|
|
|
usage: ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]
|
|
|
|
First, we quantize the encoder model:
|
|
|
|
.. code-block:: bash
|
|
|
|
cd egs/librispeech/ASR
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
ncnn2int8 \
|
|
./encoder_jit_trace-pnnx.ncnn.param \
|
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
|
./encoder_jit_trace-pnnx.ncnn.int8.param \
|
|
./encoder_jit_trace-pnnx.ncnn.int8.bin \
|
|
./encoder-scale-table.txt
|
|
|
|
Next, we quantize the joiner model:
|
|
|
|
.. code-block:: bash
|
|
|
|
ncnn2int8 \
|
|
./joiner_jit_trace-pnnx.ncnn.param \
|
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
|
./joiner_jit_trace-pnnx.ncnn.int8.param \
|
|
./joiner_jit_trace-pnnx.ncnn.int8.bin \
|
|
./joiner-scale-table.txt
|
|
|
|
The above two commands generate the following 4 files:
|
|
|
|
.. code-block:: bash
|
|
|
|
-rw-r--r-- 1 kuangfangjun root 99M Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.bin
|
|
-rw-r--r-- 1 kuangfangjun root 78K Jan 11 17:34 encoder_jit_trace-pnnx.ncnn.int8.param
|
|
-rw-r--r-- 1 kuangfangjun root 774K Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.bin
|
|
-rw-r--r-- 1 kuangfangjun root 496 Jan 11 17:35 joiner_jit_trace-pnnx.ncnn.int8.param
|
|
|
|
Congratulations! You have successfully quantized your model from ``float32`` to ``int8``.
|
|
|
|
.. caution::
|
|
|
|
``ncnn.int8.param`` and ``ncnn.int8.bin`` must be used in pairs.
|
|
|
|
You can replace ``ncnn.param`` and ``ncnn.bin`` with ``ncnn.int8.param``
|
|
and ``ncnn.int8.bin`` in `sherpa-ncnn`_ if you like.
|
|
|
|
For instance, to use only the ``int8`` encoder in ``sherpa-ncnn``, you can
|
|
replace the following invocation:
|
|
|
|
.. code-block:: bash
|
|
|
|
cd egs/librispeech/ASR
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
sherpa-ncnn \
|
|
../data/lang_bpe_500/tokens.txt \
|
|
./encoder_jit_trace-pnnx.ncnn.param \
|
|
./encoder_jit_trace-pnnx.ncnn.bin \
|
|
./decoder_jit_trace-pnnx.ncnn.param \
|
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
|
./joiner_jit_trace-pnnx.ncnn.param \
|
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
|
../test_wavs/1089-134686-0001.wav
|
|
|
|
with
|
|
|
|
.. code-block::
|
|
|
|
cd egs/librispeech/ASR
|
|
cd icefall-asr-librispeech-conv-emformer-transducer-stateless2-2022-07-05/exp/
|
|
|
|
sherpa-ncnn \
|
|
../data/lang_bpe_500/tokens.txt \
|
|
./encoder_jit_trace-pnnx.ncnn.int8.param \
|
|
./encoder_jit_trace-pnnx.ncnn.int8.bin \
|
|
./decoder_jit_trace-pnnx.ncnn.param \
|
|
./decoder_jit_trace-pnnx.ncnn.bin \
|
|
./joiner_jit_trace-pnnx.ncnn.param \
|
|
./joiner_jit_trace-pnnx.ncnn.bin \
|
|
../test_wavs/1089-134686-0001.wav
|
|
|
|
|
|
The following table compares again the file sizes:
|
|
|
|
|
|
+----------------------------------------+------------+
|
|
| File name | File size |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.pt | 283 MB |
|
|
+----------------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.pt | 1010 KB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.pt | 3.0 MB |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.bin (fp16) | 142 MB |
|
|
+----------------------------------------+------------+
|
|
| decoder_jit_trace-pnnx.ncnn.bin (fp16) | 503 KB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.bin (fp16) | 1.5 MB |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.bin (fp32) | 283 MB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.bin (fp32) | 3.0 MB |
|
|
+----------------------------------------+------------+
|
|
| encoder_jit_trace-pnnx.ncnn.int8.bin | 99 MB |
|
|
+----------------------------------------+------------+
|
|
| joiner_jit_trace-pnnx.ncnn.int8.bin | 774 KB |
|
|
+----------------------------------------+------------+
|
|
|
|
You can see that the file sizes of the model after ``int8`` quantization
|
|
are much smaller.
|
|
|
|
.. hint::
|
|
|
|
Currently, only linear layers and convolutional layers are quantized
|
|
with ``int8``, so you don't see an exact ``4x`` reduction in file sizes.
|
|
|
|
.. note::
|
|
|
|
You need to test the recognition accuracy after ``int8`` quantization.
|
|
|
|
You can find the speed comparison at `<https://github.com/k2-fsa/sherpa-ncnn/issues/44>`_.
|
|
|
|
|
|
That's it! Have fun with `sherpa-ncnn`_!
|