icefall/egs/voxpopuli/ASR/local/compute_fbank.py
Karel Vesely 4ec48f30b1 add the voxpopuli recipe
- this is the data preparation
- there is no ASR training and no results
2023-11-07 15:03:23 +01:00

243 lines
7.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# 2023 Brno University of Technology (authors: Karel Veselý)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of VoxPopuli dataset.
Usage example:
python3 ./local/compute_fbank.py \
--src-dir data/fbank --output-dir data/fbank \
--num-jobs 100 --num-workers 25 \
--prefix "voxpopuli-${task}-${lang}" \
--dataset train \
--trim-to-supervisions True \
--speed-perturb True
It looks for raw CutSet in the directory data/fbank
located at: `{src_dir}/{prefix}_cuts_{dataset}_raw.jsonl.gz`.
The generated fbank features are saved in `data/fbank/{prefix}-{dataset}_feats`
and CutSet manifest stored in `data/fbank/{prefix}_cuts_{dataset}.jsonl.gz`.
The number of workers is smaller than nunber of jobs
(see --num-jobs 100 --num-workers 25 in the example).
"""
import argparse
import logging
import multiprocessing
import os
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
import sentencepiece as spm
import torch
from filter_cuts import filter_cuts
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse import is_caching_enabled, set_caching_enabled
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to the bpe.model. If not None, we will remove short and
long utterances before extracting features""",
)
parser.add_argument(
"--src-dir",
type=str,
help="""Folder with the input manifest files.""",
default="data/manifests",
)
parser.add_argument(
"--output-dir",
type=str,
help="""Folder with the output manifests (cuts) and feature files.""",
default="data/fbank",
)
parser.add_argument(
"--prefix",
type=str,
help="""Prefix of the manifest files.""",
default="",
)
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank (train,test,dev).""",
default=None,
)
parser.add_argument(
"--num-jobs",
type=int,
help="""Number of jobs (i.e. files with extracted features)""",
default=50,
)
parser.add_argument(
"--num-workers",
type=int,
help="""Number of parallel workers""",
default=10,
)
parser.add_argument(
"--speed-perturb",
type=str2bool,
default=False,
help="""Enable speed perturbation for the set.""",
)
parser.add_argument(
"--trim-to-supervisions",
type=str2bool,
default=False,
help="""Apply `trim-to-supervision` to cut set.""",
)
return parser.parse_args()
def compute_fbank_features(args: argparse.Namespace):
set_caching_enabled(True) # lhotse
src_dir = Path(args.src_dir)
output_dir = Path(args.output_dir)
num_jobs = args.num_jobs
num_workers = min(args.num_workers, os.cpu_count())
num_mel_bins = 80
bpe_model = args.bpe_model
if bpe_model:
logging.info(f"Loading {bpe_model}")
sp = spm.SentencePieceProcessor()
sp.load(bpe_model)
prefix = args.prefix # "ELEF_TRAIN"
dataset = args.dataset
suffix = "jsonl.gz"
cuts_raw_filename = Path(f"{src_dir}/{prefix}_cuts_{dataset}_raw.{suffix}")
cuts_raw = CutSet.from_file(cuts_raw_filename)
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
cuts_filename = Path(f"{prefix}_cuts_{dataset}.{suffix}")
if (output_dir / cuts_filename).is_file():
logging.info(f"{output_dir/cuts_filename} already exists - skipping.")
return
logging.info(f"Processing {output_dir/cuts_filename}")
cut_set = cuts_raw
if bpe_model:
cut_set = filter_cuts(cut_set, sp)
if args.speed_perturb:
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
if args.trim_to_supervisions:
logging.info(f"About to `trim_to_supervisions()` {output_dir / cuts_filename}")
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
else:
logging.info(
"Not doing `trim_to_supervisions()`, "
"to enable use --trim-to-supervision=True"
)
cut_set = cut_set.to_eager() # disallow lazy evaluation (sorting requires it)
cut_set = cut_set.sort_by_recording_id() # enhances AudioCache hit rate
# We typically use `num_jobs=100, num_workers=20`
# - this is helpful for large databases
# - both values are configurable externally
executor = ProcessPoolExecutor(
max_workers=num_workers,
mp_context=multiprocessing.get_context("spawn"),
initializer=set_caching_enabled,
initargs=(is_caching_enabled(),),
)
logging.info(
f"executor {executor} : num_workers {num_workers}, num_jobs {num_jobs}"
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir / prefix}-{dataset}_feats",
num_jobs=num_jobs,
executor=executor,
storage_type=LilcomChunkyWriter,
)
# correct small deviations of duration, caused by speed-perturbation
for cut in cut_set:
assert len(cut.supervisions) == 1
duration_difference = abs(cut.supervisions[0].duration - cut.duration)
tolerance = 0.02 # 20ms
if duration_difference == 0.0:
pass
elif duration_difference <= tolerance:
logging.info(
"small mismatch of the supervision duration "
f"(Δt = {duration_difference*1000}ms), "
f"corretcing : cut.duration {cut.duration} -> "
f"supervision {cut.supervisions[0].duration}"
)
cut.supervisions[0].duration = cut.duration
else:
logging.error(
"mismatch of cut/supervision duration "
f"(Δt = {duration_difference*1000}ms) : "
f"cut.duration {cut.duration}, "
f"supervision {cut.supervisions[0].duration}"
)
raise ValueError(
"mismatch of cut/supervision duration "
f"(Δt = {duration_difference*1000}ms)"
)
# store the cutset
logging.info(f"storing CutSet to : `{output_dir / cuts_filename}`")
cut_set.to_file(output_dir / cuts_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_features(args)