2021-07-26 20:06:58 +08:00

130 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
# (still working in progress)
import argparse
import logging
from pathlib import Path
import torch
from conformer import Conformer
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.dataset.librispeech import LibriSpeechAsrDataModule
from icefall.utils import (
AttributeDict,
get_texts,
setup_logger,
store_transcripts,
write_error_stats,
)
def get_params() -> AttributeDict:
params = AttributeDict(
{
"exp_dir": Path("conformer_ctc/exp"),
"lang_dir": Path("data/lang/bpe"),
"lm_dir": Path("data/lm"),
"feature_dim": 80,
"nhead": 8,
"attention_dim": 512,
"num_classes": 5000,
"subsampling_factor": 4,
"num_decoder_layers": 6,
"vgg_frontend": False,
"is_espnet_structure": True,
"mmi_loss": False,
"use_feat_batchnorm": True,
"search_beam": 20,
"output_beam": 5,
"min_active_states": 30,
"max_active_states": 10000,
"use_double_scores": True,
# Possible values for method:
# - 1best
# - nbest
# - nbest-rescoring
# - whole-lattice-rescoring
"method": "whole-lattice-rescoring",
# num_paths is used when method is "nbest" and "nbest-rescoring"
"num_paths": 30,
}
)
return params
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=9,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=1,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
return parser
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
params = get_params()
params.update(vars(args))
setup_logger(f"{params.exp_dir}/log/log-decode")
logging.info("Decoding started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
model = Conformer(
num_features=params.feature_dim,
nhead=params.nhead,
d_model=params.attention_dim,
num_classes=params.num_classes,
subsampling_factor=params.subsampling_factor,
num_decoder_layers=params.num_decoder_layers,
vgg_frontend=params.vgg_frontend,
is_espnet_structure=params.is_espnet_structure,
mmi_loss=params.mmi_loss,
use_feat_batchnorm=params.use_feat_batchnorm,
)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames))
model.to(device)
model.eval()
token_ids_with_blank = list(range(params.num_classes))
if __name__ == "__main__":
main()