mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
311 lines
10 KiB
Python
Executable File
311 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
|
# 2024 Yuekai Zhang
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
|
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
|
# Qwen Pretrained model
|
|
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
|
|
|
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
|
--max-duration 50 \
|
|
--enable-musan False \
|
|
--exp-dir $exp_dir \
|
|
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
|
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
|
--manifest-dir data/fbank \
|
|
--deepspeed \
|
|
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
|
--use-flash-attn True \
|
|
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
|
"""
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import soundfile as sf
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
import transformers
|
|
from cosyvoice.cli.cosyvoice import CosyVoice2
|
|
from datasets import Audio, load_dataset
|
|
from decode import audio_decode_cosyvoice2
|
|
from label_smoothing import LabelSmoothingLoss
|
|
from lhotse.utils import fix_random_seed
|
|
from model import IGNORE_TOKEN_ID, SPEECH_LLM
|
|
from peft import LoraConfig, get_peft_model
|
|
from torch import Tensor
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from train import add_model_arguments, add_training_arguments, get_model, get_params
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
Qwen2Config,
|
|
Qwen2ForCausalLM,
|
|
)
|
|
from utils import ( # filter_uneven_sized_batch,
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
get_local_rank,
|
|
get_rank,
|
|
get_world_size,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
# sys.path.append("/lustre/fsw/general_sa/yuekaiz/s2s/CosyVoice/third_party/Matcha-TTS")
|
|
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
|
DEFAULT_SPEECH_TOKEN = "<speech>"
|
|
try:
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
except RuntimeError:
|
|
pass
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size to use.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split-name",
|
|
type=str,
|
|
default="test_en",
|
|
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
|
|
help="huggingface dataset split name",
|
|
)
|
|
parser.add_argument(
|
|
"--token2wav-path",
|
|
type=str,
|
|
default="/workspace/CosyVoice-300M-SFT",
|
|
help="The path to the token2wav model",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
add_training_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def preprocess(
|
|
messages,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
) -> Dict:
|
|
"""Preprocesses the data for supervised fine-tuning."""
|
|
texts = []
|
|
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
|
for i, msg in enumerate(messages):
|
|
texts.append(
|
|
tokenizer.apply_chat_template(
|
|
msg,
|
|
tokenize=True,
|
|
chat_template=TEMPLATE,
|
|
add_generation_prompt=False,
|
|
padding="longest", # FIX me change padding to longest
|
|
truncation=False,
|
|
)
|
|
)
|
|
if len(texts) != len(messages):
|
|
logging.warning(f"Remove too long text, {messages} ")
|
|
max_len_texts = max([len(text) for text in texts])
|
|
if tokenizer.padding_side == "right":
|
|
texts = [
|
|
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
|
for text in texts
|
|
]
|
|
else:
|
|
texts = [
|
|
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
|
for text in texts
|
|
]
|
|
input_ids = torch.tensor(texts, dtype=torch.int)
|
|
|
|
target_ids = input_ids.clone()
|
|
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
|
# mask all tokens before token_id <speech> with IGNORE_TOKEN_ID
|
|
# first get the indices of the tokens
|
|
mask_prompt = True
|
|
if mask_prompt:
|
|
default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN)
|
|
mask_indices = torch.where(input_ids == default_speech_token_id)
|
|
for i in range(mask_indices[0].size(0)):
|
|
row = mask_indices[0][i]
|
|
col = mask_indices[1][i]
|
|
# + 2 to skip: 'assistant', '\n'
|
|
# WAR: TODO FIXME check qwen3
|
|
# THIS IS THE ONLY DIFFERENCE FROM preprocess
|
|
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
|
target_ids[row, col] = default_speech_token_id
|
|
# remove default_speech_token_id from target_ids and input_ids
|
|
batch_size = target_ids.size(0)
|
|
|
|
target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1)
|
|
input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1)
|
|
|
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
|
return input_ids, attention_mask, target_ids
|
|
|
|
|
|
def data_collator(batch):
|
|
prompt_texts, prompt_speech_16k, messages, ids, target_texts = [], [], [], [], []
|
|
for i, item in enumerate(batch):
|
|
# speech_tokens.append(item["prompt_audio_cosy2_tokens"])
|
|
message_list_item = []
|
|
message_list_item += [
|
|
{
|
|
"role": "user",
|
|
"content": f"Generate a speech from the following text:\n\n{item['target_text']}{DEFAULT_SPEECH_TOKEN}",
|
|
},
|
|
{"role": "assistant", "content": ""},
|
|
]
|
|
messages.append(message_list_item)
|
|
target_texts.append(item["target_text"])
|
|
|
|
ids.append(item["id"])
|
|
prompt_texts.append(item["prompt_text"])
|
|
speech_org = item["prompt_audio"]
|
|
|
|
speech_org = torch.tensor(speech_org["array"], dtype=torch.float32).unsqueeze(0)
|
|
speech_org = speech_org.mean(dim=0, keepdim=True)
|
|
prompt_speech_16k.append(speech_org)
|
|
|
|
# resample to 16k
|
|
|
|
return {
|
|
"prompt_texts": prompt_texts,
|
|
"target_texts": target_texts,
|
|
"prompt_speech_16k": prompt_speech_16k,
|
|
"messages": messages,
|
|
"ids": ids,
|
|
}
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
params.log_dir = Path(params.exp_dir) / "log-results-wav"
|
|
params.log_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
fix_random_seed(params.seed)
|
|
|
|
if rank == 0:
|
|
setup_logger(f"{params.exp_dir}/log/log-decode-tts")
|
|
logging.info(params)
|
|
logging.info("About to create model")
|
|
model, tokenizer = get_model(params)
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", get_local_rank())
|
|
else:
|
|
device = torch.device("cpu")
|
|
logging.info(f"Device: {device}")
|
|
model.to(device)
|
|
|
|
dataset = load_dataset("yuekai/seed_tts_cosy2", split=params.split_name)
|
|
dataset = dataset.cast_column("prompt_audio", Audio(sampling_rate=16000))
|
|
|
|
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
|
data_loader = DataLoader(
|
|
dataset,
|
|
batch_size=params.batch_size,
|
|
sampler=sampler,
|
|
shuffle=False,
|
|
num_workers=1,
|
|
prefetch_factor=1,
|
|
collate_fn=data_collator,
|
|
)
|
|
token2wav_model = CosyVoice2(
|
|
params.token2wav_path, load_jit=False, load_trt=False, fp16=False
|
|
)
|
|
for batch in data_loader:
|
|
messages = batch["messages"]
|
|
prompt_texts = batch["prompt_texts"]
|
|
prompt_speech_16k = batch["prompt_speech_16k"]
|
|
target_texts = batch["target_texts"]
|
|
ids = batch["ids"]
|
|
input_ids, attention_mask, _ = preprocess(messages, tokenizer)
|
|
generated_ids, generated_speech_output = model.decode_with_speech_output(
|
|
None, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
|
)
|
|
generated_speech_output = [
|
|
generated_speech_output
|
|
] # WAR: only support batch = 1 for now
|
|
for cut_id, audio_tokens, prompt_text, prompt_speech, target_text in zip(
|
|
ids, generated_speech_output, prompt_texts, prompt_speech_16k, target_texts
|
|
):
|
|
speech_file_name = params.log_dir / f"{cut_id}.wav"
|
|
# save target_text to file
|
|
with open(params.log_dir / f"{cut_id}.txt", "w") as f:
|
|
f.write(f"{target_text}\n")
|
|
audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0)
|
|
if "CosyVoice2" in params.token2wav_path:
|
|
audio_hat = audio_decode_cosyvoice2(
|
|
audio_tokens,
|
|
prompt_text,
|
|
prompt_speech,
|
|
token2wav_model,
|
|
)
|
|
sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 24000)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = get_world_size()
|
|
rank = get_rank()
|
|
|
|
torch.set_num_threads(1)
|
|
# torch.set_num_interop_threads(1)
|
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
run(rank=rank, world_size=world_size, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|