2025-01-27 16:11:37 +08:00

207 lines
6.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import os
import random
from collections import defaultdict
from importlib.resources import files
import jieba
import torch
from pypinyin import Style, lazy_pinyin
from torch.nn.utils.rnn import pad_sequence
# seed everything
def seed_everything(seed=0):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# helpers
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
# tensor helpers
def lens_to_mask(
t: int["b"], length: int | None = None # noqa: F722 F821
) -> bool["b n"]: # noqa: F722 F821
if not exists(length):
length = t.amax()
seq = torch.arange(length, device=t.device)
return seq[None, :] < t[:, None]
def mask_from_start_end_indices(
seq_len: int["b"], start: int["b"], end: int["b"] # noqa: F722 F821
):
max_seq_len = seq_len.max().item()
seq = torch.arange(max_seq_len, device=start.device).long()
start_mask = seq[None, :] >= start[:, None]
end_mask = seq[None, :] < end[:, None]
return start_mask & end_mask
def mask_from_frac_lengths(
seq_len: int["b"], frac_lengths: float["b"] # noqa: F722 F821
):
lengths = (frac_lengths * seq_len).long()
max_start = seq_len - lengths
rand = torch.rand_like(frac_lengths)
start = (max_start * rand).long().clamp(min=0)
end = start + lengths
return mask_from_start_end_indices(seq_len, start, end)
def maybe_masked_mean(
t: float["b n d"], mask: bool["b n"] = None # noqa: F722 F821
) -> float["b d"]: # noqa: F722 F821
if not exists(mask):
return t.mean(dim=1)
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
num = t.sum(dim=1)
den = mask.float().sum(dim=1)
return num / den.clamp(min=1.0)
# simple utf-8 tokenizer, since paper went character based
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
return text
# char tokenizer, based on custom dataset's extracted .txt file
def list_str_to_idx(
text: list[str] | list[list[str]],
vocab_char_map: dict[str, int], # {char: idx}
padding_value=-1,
) -> int["b nt"]: # noqa: F722
list_idx_tensors = [
torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text
] # pinyin or char style
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
return text
# Get tokenizer
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
"""
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
- "char" for char-wise tokenizer, need .txt vocab_file
- "byte" for utf-8 tokenizer
- "custom" if you're directly passing in a path to the vocab.txt you want to use
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
- if use "char", derived from unfiltered character & symbol counts of custom dataset
- if use "byte", set to 256 (unicode byte range)
"""
if tokenizer in ["pinyin", "char"]:
tokenizer_path = os.path.join(
files("f5_tts").joinpath("../../data"),
f"{dataset_name}_{tokenizer}/vocab.txt",
)
with open(tokenizer_path, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
assert (
vocab_char_map[" "] == 0
), "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
elif tokenizer == "byte":
vocab_char_map = None
vocab_size = 256
elif tokenizer == "custom":
with open(dataset_name, "r", encoding="utf-8") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
return vocab_char_map, vocab_size
# convert char to pinyin
jieba.initialize()
print("Word segmentation module jieba initialized.\n")
def convert_char_to_pinyin(text_list, polyphone=True):
final_text_list = []
custom_trans = str.maketrans(
{";": ",", "": '"', "": '"', "": "'", "": "'"}
) # add custom trans here, to address oov
def is_chinese(c):
return "\u3100" <= c <= "\u9fff" # common chinese characters
for text in text_list:
char_list = []
text = text.translate(custom_trans)
for seg in jieba.cut(text):
seg_byte_len = len(bytes(seg, "UTF-8"))
if seg_byte_len == len(seg): # if pure alphabets and symbols
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
char_list.append(" ")
char_list.extend(seg)
elif polyphone and seg_byte_len == 3 * len(
seg
): # if pure east asian characters
seg_ = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
for i, c in enumerate(seg):
if is_chinese(c):
char_list.append(" ")
char_list.append(seg_[i])
else: # if mixed characters, alphabets and symbols
for c in seg:
if ord(c) < 256:
char_list.extend(c)
elif is_chinese(c):
char_list.append(" ")
char_list.extend(
lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)
)
else:
char_list.append(c)
final_text_list.append(char_list)
return final_text_list
# filter func for dirty data with many repetitions
def repetition_found(text, length=2, tolerance=10):
pattern_count = defaultdict(int)
for i in range(len(text) - length + 1):
pattern = text[i : i + length]
pattern_count[pattern] += 1
for pattern, count in pattern_count.items():
if count > tolerance:
return True
return False