mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
192 lines
5.3 KiB
Python
Executable File
192 lines
5.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
|
|
# 2024 Xiaoyu Yang
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads torchscript models, exported by `torch.jit.script()`
|
|
and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--epoch 30 \
|
|
--avg 9 \
|
|
--jit 1
|
|
|
|
Usage of this script:
|
|
|
|
repo_url=https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-2024-03-12
|
|
repo=$(basename $repo_url)
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
|
pushd $repo/exp
|
|
git lfs pull --include jit_script.pt
|
|
popd
|
|
|
|
python3 zipformer/jit_pretrained.py \
|
|
--nn-model-filename $repo/exp/jit_script.pt \
|
|
--label-dict $repo/data/class_labels_indices.csv \
|
|
$repo/test_wavs/1.wav \
|
|
$repo/test_wavs/2.wav \
|
|
$repo/test_wavs/3.wav \
|
|
$repo/test_wavs/4.wav
|
|
"""
|
|
|
|
import argparse
|
|
import csv
|
|
import logging
|
|
import math
|
|
from typing import List
|
|
|
|
import kaldifeat
|
|
import torch
|
|
import torchaudio
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nn-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the torchscript model cpu_jit.pt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--label-dict",
|
|
type=str,
|
|
help="""class_labels_indices.csv.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float = 16000
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0].contiguous())
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = torch.jit.load(args.nn_model_filename)
|
|
|
|
model.eval()
|
|
|
|
model.to(device)
|
|
|
|
# get the label dictionary
|
|
label_dict = {}
|
|
with open(args.label_dict, "r") as f:
|
|
reader = csv.reader(f, delimiter=",")
|
|
for i, row in enumerate(reader):
|
|
if i == 0:
|
|
continue
|
|
label_dict[int(row[0])] = row[2]
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = 16000
|
|
opts.mel_opts.num_bins = 80
|
|
opts.mel_opts.high_freq = -400
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
logging.info(f"Reading sound files: {args.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=args.sound_files,
|
|
)
|
|
waves = [w.to(device) for w in waves]
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(
|
|
features,
|
|
batch_first=True,
|
|
padding_value=math.log(1e-10),
|
|
)
|
|
|
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
|
|
encoder_out, encoder_out_lens = model.encoder(
|
|
features=features,
|
|
feature_lengths=feature_lengths,
|
|
)
|
|
|
|
logits = model.classifier(encoder_out, encoder_out_lens)
|
|
|
|
for filename, logit in zip(args.sound_files, logits):
|
|
topk_prob, topk_index = logit.sigmoid().topk(5)
|
|
topk_labels = [label_dict[index.item()] for index in topk_index]
|
|
logging.info(
|
|
f"{filename}: Top 5 predicted labels are {topk_labels} with "
|
|
f"probability of {topk_prob.tolist()}"
|
|
)
|
|
|
|
logging.info("Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|