328 lines
9.5 KiB
Python

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
export CUDA_VISIBLE_DEVICES="0"
./zipformer/evaluate.py \
--epoch 50 \
--avg 10 \
--exp-dir zipformer/exp \
--max-duration 1000
"""
import argparse
import logging
from pathlib import Path
from typing import Dict
import torch
import torch.nn as nn
from at_datamodule import AudioSetATDatamodule
try:
from sklearn.metrics import average_precision_score
except:
raise ImportError(f"Please run\n" "pip3 install -U scikit-learn")
from train import add_model_arguments, get_model, get_params, str2multihot
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import AttributeDict, setup_logger, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
add_model_arguments(parser)
return parser
def inference_one_batch(
params: AttributeDict,
model: nn.Module,
batch: dict,
):
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3, feature.shape
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
audio_event = supervisions["audio_event"]
label, _ = str2multihot(audio_event)
label = label.detach().cpu()
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.forward_encoder(feature, feature_lens)
audio_logits = model.forward_audio_tagging(encoder_out, encoder_out_lens)
# convert to probabilities between 0-1
audio_logits = audio_logits.sigmoid().detach().cpu()
return audio_logits, label
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
) -> Dict:
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
all_logits = []
all_labels = []
for batch_idx, batch in enumerate(dl):
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
num_cuts += len(cut_ids)
audio_logits, labels = inference_one_batch(
params=params,
model=model,
batch=batch,
)
all_logits.append(audio_logits)
all_labels.append(labels)
if batch_idx % 20 == 1:
logging.info(f"Processed {num_cuts} cuts already.")
logging.info("Finish collecting audio logits")
return all_logits, all_labels
@torch.no_grad()
def main():
parser = get_parser()
AudioSetATDatamodule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "inference_audio_tagging"
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Evaluation started")
logging.info(params)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
),
strict=False,
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
),
strict=False,
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
args.return_cuts = True
audioset = AudioSetATDatamodule(args)
audioset_cuts = audioset.audioset_eval_cuts()
audioset_dl = audioset.valid_dataloaders(audioset_cuts)
test_sets = ["audioset_eval"]
logits, labels = decode_dataset(
dl=audioset_dl,
params=params,
model=model,
)
logits = torch.cat(logits, dim=0).squeeze(dim=1).detach().numpy()
labels = torch.cat(labels, dim=0).long().detach().numpy()
# compute the metric
mAP = average_precision_score(
y_true=labels,
y_score=logits,
)
logging.info(f"mAP for audioset eval is: {mAP}")
logging.info("Done")
if __name__ == "__main__":
main()