mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
239 lines
7.2 KiB
Python
Executable File
239 lines
7.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This script converts several saved checkpoints
|
|
# to a single one using model averaging.
|
|
"""
|
|
Usage:
|
|
|
|
(1) Export to torchscript model using torch.jit.script()
|
|
|
|
./pruned_transducer_stateless2/export.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--lang data/lang_char \
|
|
--epoch 26 \
|
|
--avg 5 \
|
|
--jit true
|
|
|
|
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
|
|
load it by `torch.jit.load("cpu_jit.pt")`.
|
|
|
|
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
|
|
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
|
|
|
|
Please refer to
|
|
https://k2-fsa.github.io/sherpa/python/offline_asr/conformer/index.html
|
|
for how to use `cpu_jit.pt` for speech recognition.
|
|
|
|
(2) Export `model.state_dict()`
|
|
|
|
./pruned_transducer_stateless2/export.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--lang data/lang_char \
|
|
--epoch 26 \
|
|
--avg 5
|
|
|
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
|
|
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
|
you can do:
|
|
|
|
cd /path/to/exp_dir
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
|
|
cd /path/to/egs/reazonspeech/ASR
|
|
./pruned_transducer_stateless2/decode.py \
|
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--max-duration 180 \
|
|
--decoding-method greedy_search \
|
|
--lang data/lang_char
|
|
|
|
You can find pretrained models at
|
|
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2/tree/main/exp
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from train import get_params, get_transducer_model
|
|
from tokenizer import Tokenizer
|
|
|
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=29,
|
|
help="""It specifies the checkpoint to use for averaging.
|
|
Note: Epoch counts from 0.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless2/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
default="data/lang_char",
|
|
help="The lang dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--jit",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""True to save a model after applying torch.jit.script.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=1,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
# add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
Tokenizer.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
sp = Tokenizer.load(params.lang_dir, params.lang_type)
|
|
|
|
# <blk> is defined in local/prepare_lang_char.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
if params.jit:
|
|
# We won't use the forward() method of the model in C++, so just ignore
|
|
# it here.
|
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
# torch scriptabe.
|
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
logging.info("Using torch.jit.script")
|
|
model = torch.jit.script(model)
|
|
filename = params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
model.save(str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
else:
|
|
logging.info("Not using torch.jit.script")
|
|
# Save it using a format so that it can be loaded
|
|
# by :func:`load_checkpoint`
|
|
filename = (
|
|
params.exp_dir / f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
|
)
|
|
torch.save({"model": model.state_dict()}, str(filename))
|
|
logging.info(f"Saved to {filename}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|