mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
219 lines
7.5 KiB
Python
219 lines
7.5 KiB
Python
# Copyright 2024 Xiaomi Corporation (authors: Yifan Yang)
|
|
#
|
|
# See ../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
from typing import Any, Dict, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from lhotse import validate
|
|
from lhotse.cut import CutSet
|
|
from lhotse.dataset.collation import collate_features
|
|
from lhotse.workarounds import Hdf5MemoryIssueFix
|
|
from torch.utils.data.dataloader import default_collate
|
|
|
|
|
|
class HubertDataset(torch.utils.data.Dataset):
|
|
"""
|
|
In this implementation, there will always be a single channel.
|
|
|
|
Returns:
|
|
|
|
.. code-block::
|
|
|
|
{
|
|
'features': (B, T, F) float tensor
|
|
}
|
|
|
|
Dimension symbols legend:
|
|
* ``B`` - batch size (number of Cuts)
|
|
* ``T`` - number of frames of the longest Cut
|
|
* ``F`` - number of features
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
max_sample_size: Optional[int] = None,
|
|
sample_rate: float = 100,
|
|
label_rate: float = 50,
|
|
random_crop: bool = True,
|
|
pad_audio: bool = False,
|
|
num_classes: list = [504],
|
|
) -> None:
|
|
super().__init__()
|
|
self.sample_rate = sample_rate
|
|
self.label_rate = label_rate
|
|
self.random_crop = random_crop
|
|
self.pad_feature = pad_audio
|
|
self.num_classes = num_classes
|
|
self.max_sample_size = (
|
|
max_sample_size if max_sample_size is not None else sys.maxsize
|
|
)
|
|
|
|
# This attribute is a workaround to constantly growing HDF5 memory
|
|
# throughout the epoch. It regularly closes open file handles to
|
|
# reset the internal HDF5 caches.
|
|
self.hdf5_fix = Hdf5MemoryIssueFix(reset_interval=100)
|
|
|
|
def __getitem__(self, cuts: CutSet) -> Dict[str, Any]:
|
|
self._validate(cuts)
|
|
self.hdf5_fix.update()
|
|
|
|
# Sort the cuts by duration so that the first one determines the batch time dimensions.
|
|
cuts = cuts.sort_by_duration(ascending=False)
|
|
|
|
features = [torch.from_numpy(cut.load_features()) for cut in cuts]
|
|
feature_lens = [cut.num_frames for cut in cuts]
|
|
|
|
if self.pad_feature:
|
|
feature_size = min(max(feature_lens), self.max_sample_size)
|
|
else:
|
|
feature_size = min(min(feature_lens), self.max_sample_size)
|
|
|
|
features, padding_mask, feature_starts = self.collater_feature(
|
|
features, feature_lens, feature_size
|
|
)
|
|
|
|
kmeans = [cut.custom["kmeans"] for cut in cuts]
|
|
kmeans = [
|
|
torch.tensor([int(item) for item in label.split()], dtype=torch.int64)
|
|
for label in kmeans
|
|
]
|
|
kmeans, kmeans_lens = self.collater_frm_label(kmeans, feature_size, feature_starts)
|
|
|
|
return {
|
|
"cuts": cuts,
|
|
"features": features,
|
|
"padding_mask": padding_mask,
|
|
"kmeans": kmeans,
|
|
}
|
|
|
|
def _validate(self, cuts: CutSet) -> None:
|
|
validate(cuts)
|
|
assert all(cut.has_recording for cut in cuts)
|
|
|
|
def crop_to_max_size(self, feature, target_size):
|
|
size = len(feature)
|
|
diff = size - target_size
|
|
if diff <= 0:
|
|
return feature, 0
|
|
|
|
start, end = 0, target_size
|
|
if self.random_crop:
|
|
start = np.random.randint(0, diff + 1)
|
|
end = size - diff + start
|
|
return feature[start:end, :], start
|
|
|
|
def collater_feature(self, features, feature_lens, feature_size):
|
|
feature_dim = features[0].shape[-1]
|
|
collated_features = features[0].new_zeros(len(features), feature_size, feature_dim)
|
|
padding_mask = (
|
|
torch.BoolTensor(collated_features.shape[:-1]).fill_(False)
|
|
# if self.pad_feature else None
|
|
)
|
|
feature_starts = [0 for _ in features]
|
|
for i, (feature, feature_len) in enumerate(zip(features, feature_lens)):
|
|
diff = feature_len - feature_size
|
|
if diff == 0:
|
|
collated_features[i] = feature
|
|
elif diff < 0:
|
|
assert self.pad_feature
|
|
collated_features[i] = torch.cat([feature, feature.new_full((-diff, feature_dim), 0.0)])
|
|
padding_mask[i, diff:] = True
|
|
else:
|
|
collated_features[i], feature_starts[i] = self.crop_to_max_size(
|
|
feature, feature_size
|
|
)
|
|
return collated_features, padding_mask, feature_starts
|
|
|
|
def collate_tokens(
|
|
self,
|
|
values,
|
|
pad_idx,
|
|
eos_idx=None,
|
|
left_pad=False,
|
|
move_eos_to_beginning=False,
|
|
pad_to_length=None,
|
|
pad_to_multiple=1,
|
|
pad_to_bsz=None,
|
|
):
|
|
"""Convert a list of 1d tensors into a padded 2d tensor."""
|
|
size = max(v.size(0) for v in values)
|
|
size = size if pad_to_length is None else max(size, pad_to_length)
|
|
if pad_to_multiple != 1 and size % pad_to_multiple != 0:
|
|
size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple)
|
|
|
|
batch_size = len(values) if pad_to_bsz is None else max(len(values), pad_to_bsz)
|
|
res = values[0].new(batch_size, size).fill_(pad_idx)
|
|
|
|
def copy_tensor(src, dst):
|
|
assert dst.numel() == src.numel()
|
|
if move_eos_to_beginning:
|
|
if eos_idx is None:
|
|
# if no eos_idx is specified, then use the last token in src
|
|
dst[0] = src[-1]
|
|
else:
|
|
dst[0] = eos_idx
|
|
dst[1:] = src[:-1]
|
|
else:
|
|
dst.copy_(src)
|
|
|
|
for i, v in enumerate(values):
|
|
copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)])
|
|
return res
|
|
|
|
def collater_frm_label(self, targets, feature_size, feature_starts):
|
|
label_rate = self.label_rate
|
|
pad = self.num_classes[0] - 1
|
|
assert label_rate > 0
|
|
s2f = label_rate / self.sample_rate
|
|
frm_starts = [int(round(s * s2f)) for s in feature_starts]
|
|
frm_size = int(round(feature_size * s2f))
|
|
if not self.pad_feature:
|
|
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)]
|
|
frm_size = min(frm_size, *rem_size)
|
|
targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)]
|
|
|
|
lengths = torch.LongTensor([len(t) for t in targets])
|
|
targets = self.collate_tokens(targets, pad_idx=pad, left_pad=False)
|
|
return targets, lengths
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from lhotse import load_manifest_lazy
|
|
from lhotse.dataset import DynamicBucketingSampler
|
|
from torch.utils.data import DataLoader
|
|
|
|
dataset = HubertDataset(max_sample_size=1562)
|
|
cuts = load_manifest_lazy("data/fbank/librispeech_cuts_train-clean-100.jsonl.gz")
|
|
sampler = DynamicBucketingSampler(
|
|
cuts,
|
|
max_duration=300,
|
|
shuffle=False,
|
|
)
|
|
dl = DataLoader(
|
|
dataset,
|
|
batch_size=None,
|
|
sampler=sampler,
|
|
num_workers=0,
|
|
)
|
|
|
|
for batch_idx, batch in enumerate(dl):
|
|
print(batch["features"].shape)
|
|
print(batch["padding_mask"].shape)
|
|
print(batch["kmeans"].shape)
|