Fangjun Kuang ae1949ddcc
Support using the latest master from tencent/ncnn (#1070)
* Support using the latest master from tencent/ncnn

* small fixes
2023-05-18 20:56:58 +08:00

447 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py \
--tokens ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/tokens.txt \
--encoder-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename ./sherpa-ncnn-streaming-zipformer-en-2023-02-13/joiner_jit_trace-pnnx.ncnn.bin \
./sherpa-ncnn-streaming-zipformer-en-2023-02-13/test_wavs/1089-134686-0001.wav
You can find pretrained models at
- English: https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-en-2023-02-13
- Bilingual (Chinese + English): https://huggingface.co/csukuangfj/sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13
"""
import argparse
import logging
from typing import List, Optional, Tuple
import k2
import ncnn
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
from ncnn_custom_layer import RegisterCustomLayers
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder-param-filename",
type=str,
help="Path to encoder.ncnn.param",
)
parser.add_argument(
"--encoder-bin-filename",
type=str,
help="Path to encoder.ncnn.bin",
)
parser.add_argument(
"--decoder-param-filename",
type=str,
help="Path to decoder.ncnn.param",
)
parser.add_argument(
"--decoder-bin-filename",
type=str,
help="Path to decoder.ncnn.bin",
)
parser.add_argument(
"--joiner-param-filename",
type=str,
help="Path to joiner.ncnn.param",
)
parser.add_argument(
"--joiner-bin-filename",
type=str,
help="Path to joiner.ncnn.bin",
)
parser.add_argument(
"sound_filename",
type=str,
help="Path to foo.wav",
)
return parser.parse_args()
def to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
class Model:
def __init__(self, args):
self.init_encoder(args)
self.init_decoder(args)
self.init_joiner(args)
# Please change the parameters according to your model
# 20M
# self.num_encoder_layers = to_int_tuple("2,2,2,2,2")
# self.encoder_dims = to_int_tuple("256,256,256,256,256") # also known as d_model
# self.attention_dims = to_int_tuple("192,192,192,192,192")
# self.zipformer_downsampling_factors = to_int_tuple("1,2,4,8,2")
# self.cnn_module_kernels = to_int_tuple("31,31,31,31,31")
# 9.6M
# self.num_encoder_layers = to_int_tuple("2,3,2,2,3")
# self.encoder_dims = to_int_tuple("160,160,160,160,160") # also known as d_model
# self.attention_dims = to_int_tuple("96,96,96,96,96")
# self.zipformer_downsampling_factors = to_int_tuple("1,2,4,8,2")
# self.cnn_module_kernels = to_int_tuple("31,31,31,31,31")
# 5.5M or 6M
# self.num_encoder_layers = to_int_tuple("2,2,2,2,2")
# self.encoder_dims = to_int_tuple("128,128,128,128,128") # also known as d_model
# self.attention_dims = to_int_tuple("96,96,96,96,96")
# self.zipformer_downsampling_factors = to_int_tuple("1,2,4,8,2")
# self.cnn_module_kernels = to_int_tuple("31,31,31,31,31")
self.num_encoder_layers = to_int_tuple("2,4,3,2,4")
self.encoder_dims = to_int_tuple("384,384,384,384,384") # also known as d_model
self.attention_dims = to_int_tuple("192,192,192,192,192")
self.zipformer_downsampling_factors = to_int_tuple("1,2,4,8,2")
self.cnn_module_kernels = to_int_tuple("31,31,31,31,31")
self.decode_chunk_size = 32 // 2
num_left_chunks = 4
self.left_context_length = self.decode_chunk_size * num_left_chunks # 64
self.chunk_length = self.decode_chunk_size * 2
pad_length = 7
self.T = self.chunk_length + pad_length
def get_init_states(self) -> List[torch.Tensor]:
cached_len_list = []
cached_avg_list = []
cached_key_list = []
cached_val_list = []
cached_val2_list = []
cached_conv1_list = []
cached_conv2_list = []
for i in range(len(self.num_encoder_layers)):
num_layers = self.num_encoder_layers[i]
ds = self.zipformer_downsampling_factors[i]
attention_dim = self.attention_dims[i]
left_context_length = self.left_context_length // ds
encoder_dim = self.encoder_dims[i]
cnn_module_kernel = self.cnn_module_kernels[i]
cached_len_list.append(torch.zeros(num_layers))
cached_avg_list.append(torch.zeros(num_layers, encoder_dim))
cached_key_list.append(
torch.zeros(num_layers, left_context_length, attention_dim)
)
cached_val_list.append(
torch.zeros(num_layers, left_context_length, attention_dim // 2)
)
cached_val2_list.append(
torch.zeros(num_layers, left_context_length, attention_dim // 2)
)
cached_conv1_list.append(
torch.zeros(num_layers, encoder_dim, cnn_module_kernel - 1)
)
cached_conv2_list.append(
torch.zeros(num_layers, encoder_dim, cnn_module_kernel - 1)
)
states = (
cached_len_list
+ cached_avg_list
+ cached_key_list
+ cached_val_list
+ cached_val2_list
+ cached_conv1_list
+ cached_conv2_list
)
return states
def init_encoder(self, args):
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
encoder_net.opt.num_threads = 4
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
RegisterCustomLayers(encoder_net)
encoder_net.load_param(encoder_param)
encoder_net.load_model(encoder_model)
self.encoder_net = encoder_net
def init_decoder(self, args):
decoder_param = args.decoder_param_filename
decoder_model = args.decoder_bin_filename
decoder_net = ncnn.Net()
decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
self.decoder_net = decoder_net
def init_joiner(self, args):
joiner_param = args.joiner_param_filename
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.num_threads = 4
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
self.joiner_net = joiner_net
def run_encoder(
self,
x: torch.Tensor,
states: List[torch.Tensor],
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Args:
x:
A tensor of shape (T, C)
states:
A list of tensors. len(states) == self.num_layers * 4
Returns:
Return a tuple containing:
- encoder_out, a tensor of shape (T, encoder_dim).
- next_states, a list of tensors containing the next states
"""
with self.encoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(x.numpy()).clone())
for i in range(len(states)):
name = f"in{i+1}"
ex.input(name, ncnn.Mat(states[i].squeeze().numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
out_states: List[torch.Tensor] = []
for i in range(len(states)):
name = f"out{i+1}"
ret, ncnn_out_state = ex.extract(name)
assert ret == 0, ret
ncnn_out_state = torch.from_numpy(ncnn_out_state.numpy())
if i < len(self.num_encoder_layers):
# for cached_len, we need to discard the last dim
ncnn_out_state = ncnn_out_state.squeeze(1)
out_states.append(ncnn_out_state)
return encoder_out, out_states
def run_decoder(self, decoder_input):
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return decoder_out
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return joiner_out
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: Model,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
):
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
else:
assert decoder_out.ndim == 1
assert hyp is not None, hyp
T = encoder_out.size(0)
for t in range(T):
cur_encoder_out = encoder_out[t]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
return hyp, decoder_out
def main():
args = get_args()
logging.info(vars(args))
model = Model(args)
sound_file = args.sound_filename
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info(wave_samples.shape)
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([wave_samples, tail_padding])
states = model.get_init_states()
logging.info(f"number of states: {len(states)}")
hyp = None
decoder_out = None
num_processed_frames = 0
segment = model.T
offset = model.chunk_length
chunk = int(1 * sample_rate) # 0.2 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
encoder_out, states = model.run_encoder(frames, states)
hyp, decoder_out = greedy_search(model, encoder_out, decoder_out, hyp)
symbol_table = k2.SymbolTable.from_file(args.tokens)
context_size = 2
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("", " ").strip()
logging.info(sound_file)
logging.info(text)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()