icefall/egs/librispeech/SSL/hubert/wav2vec2_module.py
Yifan Yang 87843e9382
k2SSL: a Faster and Better Framework for Self-Supervised Speech Representation Learning (#1500)
* Add k2SSL

* fix flake8

* fix for black

* fix for black

* fix for black

* Update ssl_datamodule.py

* Fix bugs in HubertDataset

* update comments

* add librilight

* add checkpoint convert script

* format

---------

Co-authored-by: yifanyeung <yifanyeung@yifanyeung.local>
Co-authored-by: zzasdf <15218404468@163.com>
2024-04-04 23:29:16 +08:00

594 lines
20 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention_module import MultiheadAttention, init_bert_params
from utils import (
Fp32GroupNorm,
Fp32LayerNorm,
LayerNorm,
SamePad,
TransposeLast,
get_activation_fn,
index_put,
pad_to_multiple,
)
class ConvFeatureExtractionModel(nn.Module):
def __init__(
self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(
n_in,
n_out,
k,
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
def make_conv():
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.Sequential(
TransposeLast(),
Fp32LayerNorm(dim, elementwise_affine=True),
TransposeLast(),
),
nn.GELU(),
)
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
Fp32GroupNorm(dim, dim, affine=True),
nn.GELU(),
)
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
in_d = 1
self.conv_layers = nn.ModuleList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3, "invalid conv definition: " + str(cl)
(dim, k, stride) = cl
self.conv_layers.append(
block(
in_d,
dim,
k,
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
in_d = dim
def forward(self, x):
# BxT -> BxCxT
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x
def make_conv_pos(e, k, g, is_batch_norm=False):
pos_conv = nn.Conv1d(
e,
e,
kernel_size=k,
padding=k // 2,
groups=g,
)
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (k * e))
nn.init.normal_(pos_conv.weight, mean=0, std=std)
nn.init.constant_(pos_conv.bias, 0)
if not is_batch_norm:
pos_conv = nn.utils.parametrizations.weight_norm(pos_conv, name="weight", dim=2)
pos_conv = nn.Sequential(pos_conv, SamePad(k), nn.GELU())
else:
batch_norm = nn.BatchNorm1d(e)
pos_conv = nn.Sequential(batch_norm, pos_conv, SamePad(k), nn.GELU())
return pos_conv
class TransformerEncoder(nn.Module):
def build_encoder_layer(self, args, **kwargs):
if args.layer_type == "transformer":
layer = TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
)
elif args.layer_type == "trf_adp":
use_adp = False
if args.adp_trf_idx == "all":
use_adp = True
else:
adp_trf_idx = list(
range(*[int(g) for g in args.adp_trf_idx.split(":")])
)
if kwargs.get("layer_idx", None) in adp_trf_idx:
use_adp = True
if use_adp:
layer = TransformerSentenceEncoderWithAdapterLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
adapter_num=args.adp_num,
adapter_dim=args.adp_dim,
adapter_act_fn=args.adp_act_fn,
)
else:
layer = TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
)
# layer = fsdp_wrap(layer)
# if args.checkpoint_activations:
# layer = checkpoint_wrapper(layer)
return layer
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
self.required_seq_len_multiple = args.required_seq_len_multiple
pos_conv_depth = getattr(args, "pos_conv_depth", 1)
if pos_conv_depth > 1:
num_layers = args.pos_conv_depth
k = max(3, args.conv_pos // num_layers)
def make_conv_block(e, k, g, l):
return nn.Sequential(
*[
nn.Sequential(
nn.Conv1d(
e,
e,
kernel_size=k,
padding=k // 2,
groups=g,
),
SamePad(k),
TransposeLast(),
LayerNorm(e, elementwise_affine=False),
TransposeLast(),
nn.GELU(),
)
for _ in range(l)
]
)
self.pos_conv = make_conv_block(
self.embedding_dim, k, args.conv_pos_groups, num_layers
)
else:
self.pos_conv = make_conv_pos(
self.embedding_dim,
args.conv_pos,
args.conv_pos_groups,
is_batch_norm=args.conv_pos_batch_norm
if hasattr(args, "conv_pos_batch_norm")
else False,
)
self.layers = nn.ModuleList(
[
self.build_encoder_layer(args, layer_idx=ii)
for ii in range(args.encoder_layers)
]
)
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
self.apply(init_bert_params)
def forward(self, x, padding_mask=None, layer=None, corpus_key=None):
x, layer_results = self.extract_features(
x, padding_mask, layer, corpus_key=corpus_key
)
if self.layer_norm_first and layer is None:
x = self.layer_norm(x)
return x, layer_results
def extract_features(
self,
x,
padding_mask=None,
tgt_layer=None,
min_layer=0,
corpus_key=None,
):
if padding_mask is not None:
x = index_put(x, padding_mask, 0)
x_conv = self.pos_conv(x.transpose(1, 2))
x_conv = x_conv.transpose(1, 2)
x = x + x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
# pad to the sequence length dimension
x, pad_length = pad_to_multiple(
x, self.required_seq_len_multiple, dim=-2, value=0
)
if pad_length > 0 and padding_mask is None:
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
padding_mask[:, -pad_length:] = True
else:
padding_mask, _ = pad_to_multiple(
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
layer_results = []
r = None
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
if not self.training or (dropout_probability > self.layerdrop):
layer_check = layer
# if isinstance(layer, FullyShardedDataParallel):
# layer_check = layer.unwrapped_module
if (corpus_key is None) or (
not isinstance(
layer_check,
(TransformerSentenceEncoderWithAdapterLayer,),
)
):
x, (z, lr) = layer(
x,
self_attn_padding_mask=padding_mask,
need_weights=False,
)
else:
x, (z, lr) = layer(
x,
self_attn_padding_mask=padding_mask,
need_weights=False,
corpus_key=corpus_key,
)
if i >= min_layer:
layer_results.append((x, z, lr))
if i == tgt_layer:
r = x
break
if r is not None:
x = r
# T x B x C -> B x T x C
x = x.transpose(0, 1)
# undo paddding
if pad_length > 0:
x = x[:, :-pad_length]
def undo_pad(a, b, c):
return (
a[:-pad_length],
b[:-pad_length] if b is not None else b,
c[:-pad_length],
)
layer_results = [undo_pad(*u) for u in layer_results]
return x, layer_results
def max_positions(self):
"""Maximum output length supported by the encoder."""
return self.args.max_positions
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
class TransformerSentenceEncoderLayer(nn.Module):
"""
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
models.
"""
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
# Initialize blocks
self.activation_fn = get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
# layer norm associated with the self attention layer
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim)
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
att_args=None,
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer imlementation.
"""
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
attn_mask=self_attn_mask,
need_weights=False,
)
x = self.dropout1(x)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
layer_result = x
x = self.dropout3(x)
x = residual + x
else:
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
)
x = self.dropout1(x)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
layer_result = x
x = self.dropout3(x)
x = residual + x
x = self.final_layer_norm(x)
return x, (attn, layer_result)
class AdapterFast(nn.Module):
def __init__(self, adapter_num, input_dim, hidden_dim, act_fn):
"""
Implements adapter modules directly with 3D tensor weight as parameters
and without using ModuleList orto speed up training throughput.
"""
super().__init__()
self.adapter_num = adapter_num
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim))
self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim))
self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim))
self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim))
self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim))
self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim))
self.act_fn = nn.Identity()
if act_fn == "relu":
self.act_fn = nn.ReLU()
elif act_fn == "gelu":
self.act_fn = nn.GELU()
elif act_fn == "selu":
self.act_fn = nn.SELU()
else:
raise ValueError(f"unsupported {act_fn}")
self.input_dim = input_dim
self.reset_parameters()
def reset_parameters(self):
for ii in range(self.adapter_num):
nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5))
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii])
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.b_a[ii], -bound, bound)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii])
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(self.b_b[ii], -bound, bound)
nn.init.ones_(self.ln_W)
nn.init.zeros_(self.ln_b)
def forward(self, x, adapter_id):
ii = adapter_id
h = x
h = F.layer_norm(h, (self.input_dim,), self.ln_W[ii], self.ln_b[ii])
h = F.linear(h, self.W_a[ii], self.b_a[ii])
h = self.act_fn(h)
h = F.linear(h, self.W_b[ii], self.b_b[ii])
outputs = h
return outputs
def extra_repr(self):
return "adapter={}, input_dim={}, hidden_dim={}".format(
self.adapter_num, self.input_dim, self.hidden_dim
)
class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer):
"""
Implements a Transformer Encoder Layer with adapters used in BERT/XLM style pre-trained
models. An adapter module is added along with vanilla Transformer module.
"""
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
adapter_num=201,
adapter_dim=64,
adapter_act_fn="relu",
) -> None:
super().__init__(
embedding_dim=embedding_dim,
ffn_embedding_dim=ffn_embedding_dim,
num_attention_heads=num_attention_heads,
dropout=dropout,
attention_dropout=attention_dropout,
activation_dropout=activation_dropout,
activation_fn=activation_fn,
layer_norm_first=layer_norm_first,
)
self.adapter_num = adapter_num
self.adapter_dim = adapter_dim
self.adapter_layer = AdapterFast(
adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn
)
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
att_args=None,
corpus_key=None,
):
x, (attn, layer_result) = super().forward(
x=x,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
need_weights=need_weights,
att_args=att_args,
)
assert corpus_key is not None
assert len(set(corpus_key)) == 1, f"corpus_key items are not same {corpus_key}"
y = self.adapter_layer(x, corpus_key[0])
x = x + y
return x, (attn, layer_result)