mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* Replace deprecated pytorch methods - torch.cuda.amp.GradScaler(...) => torch.amp.GradScaler("cuda", ...) - torch.cuda.amp.autocast(...) => torch.amp.autocast("cuda", ...) * Replace `with autocast(...)` with `with autocast("cuda", ...)` Co-authored-by: Li Peng <lipeng@unisound.ai>
1365 lines
42 KiB
Python
Executable File
1365 lines
42 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
# Wei Kang,
|
|
# Mingshuang Luo,
|
|
# Zengwei Yao,
|
|
# Yifan Yang,
|
|
# Daniel Povey)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
|
|
|
# For non-streaming model training:
|
|
./zipformer/train.py \
|
|
--world-size 8 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir zipformer/exp \
|
|
--max-duration 1000
|
|
|
|
# For streaming model training:
|
|
./zipformer/train.py \
|
|
--world-size 8 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir zipformer/exp \
|
|
--causal 1 \
|
|
--max-duration 1000
|
|
|
|
It supports training with:
|
|
- transducer loss (default), with `--use-transducer True --use-ctc False`
|
|
- ctc loss (not recommended), with `--use-transducer False --use-ctc True`
|
|
- transducer loss & ctc loss, with `--use-transducer True --use-ctc True`
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import warnings
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import k2
|
|
import optim
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from asr_datamodule import GigaSpeechAsrDataModule
|
|
from decoder import Decoder
|
|
from joiner import Joiner
|
|
from lhotse.cut import Cut
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from model import AsrModel
|
|
from optim import Eden, ScaledAdam
|
|
from scaling import ScheduledFloat
|
|
from subsampling import Conv2dSubsampling
|
|
from torch import Tensor
|
|
from torch.amp import GradScaler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from zipformer import Zipformer2
|
|
|
|
from icefall import diagnostics
|
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import (
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.err import raise_grad_scale_is_too_small_error
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
get_parameter_groups_with_lrs,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
|
|
|
|
|
def get_adjusted_batch_count(params: AttributeDict) -> float:
|
|
# returns the number of batches we would have used so far if we had used the reference
|
|
# duration. This is for purposes of set_batch_count().
|
|
return (
|
|
params.batch_idx_train
|
|
* (params.max_duration * params.world_size)
|
|
/ params.ref_duration
|
|
)
|
|
|
|
|
|
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
|
|
if isinstance(model, DDP):
|
|
# get underlying nn.Module
|
|
model = model.module
|
|
for name, module in model.named_modules():
|
|
if hasattr(module, "batch_count"):
|
|
module.batch_count = batch_count
|
|
if hasattr(module, "name"):
|
|
module.name = name
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--num-encoder-layers",
|
|
type=str,
|
|
default="2,2,3,4,3,2",
|
|
help="Number of zipformer encoder layers per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--downsampling-factor",
|
|
type=str,
|
|
default="1,2,4,8,4,2",
|
|
help="Downsampling factor for each stack of encoder layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--feedforward-dim",
|
|
type=str,
|
|
default="512,768,1024,1536,1024,768",
|
|
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-heads",
|
|
type=str,
|
|
default="4,4,4,8,4,4",
|
|
help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-dim",
|
|
type=str,
|
|
default="192,256,384,512,384,256",
|
|
help="Embedding dimension in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--query-head-dim",
|
|
type=str,
|
|
default="32",
|
|
help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--value-head-dim",
|
|
type=str,
|
|
default="12",
|
|
help="Value dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pos-head-dim",
|
|
type=str,
|
|
default="4",
|
|
help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pos-dim",
|
|
type=int,
|
|
default="48",
|
|
help="Positional-encoding embedding dimension",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--encoder-unmasked-dim",
|
|
type=str,
|
|
default="192,192,256,256,256,192",
|
|
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
|
|
"A single int or comma-separated list. Must be <= each corresponding encoder_dim.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--cnn-module-kernel",
|
|
type=str,
|
|
default="31,31,15,15,15,31",
|
|
help="Sizes of convolutional kernels in convolution modules in each encoder stack: "
|
|
"a single int or comma-separated list.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoder-dim",
|
|
type=int,
|
|
default=512,
|
|
help="Embedding dimension in the decoder model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--joiner-dim",
|
|
type=int,
|
|
default=512,
|
|
help="""Dimension used in the joiner model.
|
|
Outputs from the encoder and decoder model are projected
|
|
to this dimension before adding.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--causal",
|
|
type=str2bool,
|
|
default=False,
|
|
help="If True, use causal version of model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--chunk-size",
|
|
type=str,
|
|
default="16,32,64,-1",
|
|
help="Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. "
|
|
" Must be just -1 if --causal=False",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--left-context-frames",
|
|
type=str,
|
|
default="64,128,256,-1",
|
|
help="Maximum left-contexts for causal training, measured in frames which will "
|
|
"be converted to a number of chunks. If splitting into chunks, "
|
|
"chunk left-context frames will be chosen randomly from this list; else not relevant.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-transducer",
|
|
type=str2bool,
|
|
default=True,
|
|
help="If True, use Transducer head.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-ctc",
|
|
type=str2bool,
|
|
default=False,
|
|
help="If True, use CTC head.",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=30,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--base-lr", type=float, default=0.045, help="The base learning rate."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-batches",
|
|
type=float,
|
|
default=7500,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-epochs",
|
|
type=float,
|
|
default=1,
|
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ref-duration",
|
|
type=float,
|
|
default=600,
|
|
help="Reference batch duration for purposes of adjusting batch counts for setting various "
|
|
"schedules inside the model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--prune-range",
|
|
type=int,
|
|
default=5,
|
|
help="The prune range for rnnt loss, it means how many symbols(context)"
|
|
"we are using to compute the loss",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lm-scale",
|
|
type=float,
|
|
default=0.25,
|
|
help="The scale to smooth the loss with lm "
|
|
"(output of prediction network) part.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--am-scale",
|
|
type=float,
|
|
default=0.0,
|
|
help="The scale to smooth the loss with am (output of encoder network)" "part.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--simple-loss-scale",
|
|
type=float,
|
|
default=0.5,
|
|
help="To get pruning ranges, we will calculate a simple version"
|
|
"loss(joiner is just addition), this simple loss also uses for"
|
|
"training (as a regularization item). We will scale the simple loss"
|
|
"with this parameter before adding to the final loss.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--ctc-loss-scale",
|
|
type=float,
|
|
default=0.2,
|
|
help="Scale for CTC loss.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--scan-for-oom-batches",
|
|
type=str2bool,
|
|
default=False,
|
|
help="""
|
|
Whether to scan for oom batches before training, this is helpful for
|
|
finding the suitable max_duration, you only need to run it once.
|
|
Caution: a little time consuming.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=8000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=200,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- subsampling_factor: The subsampling factor for the model.
|
|
|
|
- encoder_dim: Hidden dim for multi-head attention model.
|
|
|
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
|
|
|
- warm_step: The warmup period that dictates the decay of the
|
|
scale on "simple" (un-pruned) loss.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 500,
|
|
"reset_interval": 2000,
|
|
"valid_interval": 20000,
|
|
# parameters for zipformer
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4, # not passed in, this is fixed.
|
|
"warm_step": 2000,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def _to_int_tuple(s: str):
|
|
return tuple(map(int, s.split(",")))
|
|
|
|
|
|
def get_encoder_embed(params: AttributeDict) -> nn.Module:
|
|
# encoder_embed converts the input of shape (N, T, num_features)
|
|
# to the shape (N, (T - 7) // 2, encoder_dims).
|
|
# That is, it does two things simultaneously:
|
|
# (1) subsampling: T -> (T - 7) // 2
|
|
# (2) embedding: num_features -> encoder_dims
|
|
# In the normal configuration, we will downsample once more at the end
|
|
# by a factor of 2, and most of the encoder stacks will run at a lower
|
|
# sampling rate.
|
|
encoder_embed = Conv2dSubsampling(
|
|
in_channels=params.feature_dim,
|
|
out_channels=_to_int_tuple(params.encoder_dim)[0],
|
|
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
|
|
)
|
|
return encoder_embed
|
|
|
|
|
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
encoder = Zipformer2(
|
|
output_downsampling_factor=2,
|
|
downsampling_factor=_to_int_tuple(params.downsampling_factor),
|
|
num_encoder_layers=_to_int_tuple(params.num_encoder_layers),
|
|
encoder_dim=_to_int_tuple(params.encoder_dim),
|
|
encoder_unmasked_dim=_to_int_tuple(params.encoder_unmasked_dim),
|
|
query_head_dim=_to_int_tuple(params.query_head_dim),
|
|
pos_head_dim=_to_int_tuple(params.pos_head_dim),
|
|
value_head_dim=_to_int_tuple(params.value_head_dim),
|
|
pos_dim=params.pos_dim,
|
|
num_heads=_to_int_tuple(params.num_heads),
|
|
feedforward_dim=_to_int_tuple(params.feedforward_dim),
|
|
cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel),
|
|
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
|
|
warmup_batches=4000.0,
|
|
causal=params.causal,
|
|
chunk_size=_to_int_tuple(params.chunk_size),
|
|
left_context_frames=_to_int_tuple(params.left_context_frames),
|
|
)
|
|
return encoder
|
|
|
|
|
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
decoder = Decoder(
|
|
vocab_size=params.vocab_size,
|
|
decoder_dim=params.decoder_dim,
|
|
blank_id=params.blank_id,
|
|
context_size=params.context_size,
|
|
)
|
|
return decoder
|
|
|
|
|
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
joiner = Joiner(
|
|
encoder_dim=max(_to_int_tuple(params.encoder_dim)),
|
|
decoder_dim=params.decoder_dim,
|
|
joiner_dim=params.joiner_dim,
|
|
vocab_size=params.vocab_size,
|
|
)
|
|
return joiner
|
|
|
|
|
|
def get_model(params: AttributeDict) -> nn.Module:
|
|
assert params.use_transducer or params.use_ctc, (
|
|
f"At least one of them should be True, "
|
|
f"but got params.use_transducer={params.use_transducer}, "
|
|
f"params.use_ctc={params.use_ctc}"
|
|
)
|
|
|
|
encoder_embed = get_encoder_embed(params)
|
|
encoder = get_encoder_model(params)
|
|
|
|
if params.use_transducer:
|
|
decoder = get_decoder_model(params)
|
|
joiner = get_joiner_model(params)
|
|
else:
|
|
decoder = None
|
|
joiner = None
|
|
|
|
model = AsrModel(
|
|
encoder_embed=encoder_embed,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
joiner=joiner,
|
|
encoder_dim=max(_to_int_tuple(params.encoder_dim)),
|
|
decoder_dim=params.decoder_dim,
|
|
vocab_size=params.vocab_size,
|
|
use_transducer=params.use_transducer,
|
|
use_ctc=params.use_ctc,
|
|
)
|
|
return model
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
model_avg: nn.Module = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that we are using.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
model_avg: Optional[nn.Module] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
sampler: Optional[CutSampler] = None,
|
|
scaler: Optional[GradScaler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer used in the training.
|
|
sampler:
|
|
The sampler for the training dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
sp: spm.SentencePieceProcessor,
|
|
batch: dict,
|
|
is_training: bool,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute loss given the model and its inputs.
|
|
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Zipformer in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
warmup: a floating point value which increases throughout training;
|
|
values >= 1.0 are fully warmed up and have all modules present.
|
|
"""
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
# at entry, feature is (N, T, C)
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
batch_idx_train = params.batch_idx_train
|
|
warm_step = params.warm_step
|
|
|
|
texts = batch["supervisions"]["text"]
|
|
y = sp.encode(texts, out_type=int)
|
|
y = k2.RaggedTensor(y)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
losses = model(
|
|
x=feature,
|
|
x_lens=feature_lens,
|
|
y=y,
|
|
prune_range=params.prune_range,
|
|
am_scale=params.am_scale,
|
|
lm_scale=params.lm_scale,
|
|
)
|
|
simple_loss, pruned_loss, ctc_loss = losses[:3]
|
|
|
|
loss = 0.0
|
|
|
|
if params.use_transducer:
|
|
s = params.simple_loss_scale
|
|
# take down the scale on the simple loss from 1.0 at the start
|
|
# to params.simple_loss scale by warm_step.
|
|
simple_loss_scale = (
|
|
s
|
|
if batch_idx_train >= warm_step
|
|
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
|
)
|
|
pruned_loss_scale = (
|
|
1.0
|
|
if batch_idx_train >= warm_step
|
|
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
|
)
|
|
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
|
|
|
if params.use_ctc:
|
|
loss += params.ctc_loss_scale * ctc_loss
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
|
|
|
# Note: We use reduction=sum while computing the loss.
|
|
info["loss"] = loss.detach().cpu().item()
|
|
if params.use_transducer:
|
|
info["simple_loss"] = simple_loss.detach().cpu().item()
|
|
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
|
if params.use_ctc:
|
|
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
sp: spm.SentencePieceProcessor,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
sp: spm.SentencePieceProcessor,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
saved_bad_model = False
|
|
|
|
def save_bad_model(suffix: str = ""):
|
|
save_checkpoint_impl(
|
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=0,
|
|
)
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
if batch_idx % 10 == 0:
|
|
set_batch_count(model, get_adjusted_batch_count(params))
|
|
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
try:
|
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
scaler.scale(loss).backward()
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except: # noqa
|
|
save_bad_model()
|
|
display_and_save_batch(batch, params=params, sp=sp)
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
|
|
if batch_idx % 100 == 0 and params.use_fp16:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
|
|
if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
if not saved_bad_model:
|
|
save_bad_model(suffix="-first-warning")
|
|
saved_bad_model = True
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
save_bad_model()
|
|
raise_grad_scale_is_too_small_error(cur_grad_scale)
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
cur_lr = max(scheduler.get_last_lr())
|
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}, "
|
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
|
)
|
|
|
|
if batch_idx % params.valid_interval == 0 and not params.print_diagnostics:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
if not params.use_transducer:
|
|
params.ctc_loss_scale = 1.0
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
assert params.save_every_n >= params.average_period
|
|
model_avg: Optional[nn.Module] = None
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model).to(torch.float64)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
optimizer = ScaledAdam(
|
|
get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True),
|
|
lr=params.base_lr, # should have no effect
|
|
clipping_scale=2.0,
|
|
)
|
|
|
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
|
|
|
if checkpoints and "optimizer" in checkpoints:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if (
|
|
checkpoints
|
|
and "scheduler" in checkpoints
|
|
and checkpoints["scheduler"] is not None
|
|
):
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
512
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
def remove_short_utt(c: Cut):
|
|
# In ./zipformer.py, the conv module uses the following expression
|
|
# for subsampling
|
|
T = ((c.num_frames - 7) // 2 + 1) // 2
|
|
return T > 0
|
|
|
|
gigaspeech = GigaSpeechAsrDataModule(args)
|
|
|
|
train_cuts = gigaspeech.train_cuts()
|
|
train_cuts = train_cuts.filter(remove_short_utt)
|
|
|
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
|
# We only load the sampler's state dict when it loads a checkpoint
|
|
# saved in the middle of an epoch
|
|
sampler_state_dict = checkpoints["sampler"]
|
|
else:
|
|
sampler_state_dict = None
|
|
|
|
train_dl = gigaspeech.train_dataloaders(
|
|
train_cuts, sampler_state_dict=sampler_state_dict
|
|
)
|
|
|
|
valid_cuts = gigaspeech.dev_cuts()
|
|
valid_cuts = valid_cuts.filter(remove_short_utt)
|
|
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
|
|
|
|
if not params.print_diagnostics and params.scan_for_oom_batches:
|
|
scan_pessimistic_batches_for_oom(
|
|
model=model,
|
|
train_dl=train_dl,
|
|
optimizer=optimizer,
|
|
sp=sp,
|
|
params=params,
|
|
)
|
|
|
|
scaler = GradScaler("cuda", enabled=params.use_fp16, init_scale=1.0)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sp=sp,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def display_and_save_batch(
|
|
batch: dict,
|
|
params: AttributeDict,
|
|
sp: spm.SentencePieceProcessor,
|
|
) -> None:
|
|
"""Display the batch statistics and save the batch into disk.
|
|
|
|
Args:
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
sp:
|
|
The BPE model.
|
|
"""
|
|
from lhotse.utils import uuid4
|
|
|
|
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
|
|
logging.info(f"Saving batch to {filename}")
|
|
torch.save(batch, filename)
|
|
|
|
supervisions = batch["supervisions"]
|
|
features = batch["inputs"]
|
|
|
|
logging.info(f"features shape: {features.shape}")
|
|
|
|
y = sp.encode(supervisions["text"], out_type=int)
|
|
num_tokens = sum(len(i) for i in y)
|
|
logging.info(f"num tokens: {num_tokens}")
|
|
|
|
|
|
def scan_pessimistic_batches_for_oom(
|
|
model: Union[nn.Module, DDP],
|
|
train_dl: torch.utils.data.DataLoader,
|
|
optimizer: torch.optim.Optimizer,
|
|
sp: spm.SentencePieceProcessor,
|
|
params: AttributeDict,
|
|
):
|
|
from lhotse.dataset import find_pessimistic_batches
|
|
|
|
logging.info(
|
|
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
|
|
)
|
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
|
for criterion, cuts in batches.items():
|
|
batch = train_dl.dataset[cuts]
|
|
try:
|
|
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
|
loss, _ = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
batch=batch,
|
|
is_training=True,
|
|
)
|
|
loss.backward()
|
|
optimizer.zero_grad()
|
|
except Exception as e:
|
|
if "CUDA out of memory" in str(e):
|
|
logging.error(
|
|
"Your GPU ran out of memory with the current "
|
|
"max_duration setting. We recommend decreasing "
|
|
"max_duration and trying again.\n"
|
|
f"Failing criterion: {criterion} "
|
|
f"(={crit_values[criterion]}) ..."
|
|
)
|
|
display_and_save_batch(batch, params=params, sp=sp)
|
|
raise
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
GigaSpeechAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|