2022-05-23 18:18:04 +08:00

62 lines
1.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer_lstm/test_encoder.py
"""
import torch
from train import get_encoder_model, get_params
def test_encoder_model():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
encoder = get_encoder_model(params)
num_param = sum([p.numel() for p in encoder.parameters()])
print(f"Number of encoder model parameters: {num_param}")
N = 3
T = 500
C = 80
x = torch.rand(N, T, C)
x_lens = torch.tensor([100, 500, 300])
y, y_lens = encoder(x, x_lens)
print(y.shape)
expected_y_lens = (((x_lens - 1) >> 1) - 1) >> 1
assert torch.all(torch.eq(y_lens, expected_y_lens)), (
y_lens,
expected_y_lens,
)
def main():
test_encoder_model()
if __name__ == "__main__":
main()