icefall/egs/commonvoice/ASR/local/compute_fbank_commonvoice_splits.py
Yifan Yang 3cb0a0121b
Add Common Voice (#994)
* Add commonvoice

* Add data preparation recipe

* Updata

* update prepare.sh

* Fix for black

* Update prefix with cv-

* 20 ->

* Update compute_fbank_commonvoice_dev_test.py

* Update prepare.sh

* Update compute_fbank_commonvoice_dev_test.py
2023-04-11 20:56:40 +08:00

158 lines
4.4 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from datetime import datetime
from pathlib import Path
import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomChunkyWriter,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--language",
type=str,
help="""Language of Common Voice""",
)
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the train subset",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser.parse_args()
def compute_fbank_commonvoice_splits(args):
subset = "train"
num_splits = args.num_splits
language = args.language
output_dir = f"data/{language}/fbank/{subset}_split_{num_splits}"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = len(str(num_splits))
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")
cuts_path = output_dir / f"cv-{language}_cuts_{subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = output_dir / f"cv-{language}_cuts_{subset}_raw.{idx}.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Splitting cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/cv-{language}_feats_{subset}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
compute_fbank_commonvoice_splits(args)
if __name__ == "__main__":
main()