mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
Introduction
This recipe includes scripts for training speech2speech models.
SPEECH2SPEECH
The following table lists the folders for different tasks.
Recipe | Speech Input | Speech Output | Comment |
---|---|---|---|
Qwen-omni like | Continuous Embeddins | Cosyvoice1 50Hz Single-codebook Token | Text-driven; using Thinker LLM for text token, small Talker LLM for speech token |
Qwen-omni like Speech2speech Recipe
Qwen2.5-Omni style model using worstchan/Belle_1.4M-SLAM-Omni dataset.
Command for training is:
pip install -r whisper_llm_zh/requirements.txt
pip install huggingface_hub['cli']
mkdir -p models/whisper models/qwen
# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
# huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-1.5B-Instruct
# First, we only train the projector and freeze other modules.
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
--max-duration 200 \
--exp-dir ./whisper_llm_zh/exp_test \
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
--llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
--use-flash-attn True \
--use-lora False --unfreeze-llm False
# Then we jointly train the projector and LLM LoRA modules.
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
--max-duration 200 \
--exp-dir ./whisper_llm_zh/exp_test \
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
--llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
--manifest-dir data/fbank \
--deepspeed \
--deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
--use-flash-attn True \
--use-lora True --unfreeze-llm True
--pretrained-model-path ./whisper_llm_zh/exp_test/epoch-3.pt
Command for decoding:
mkdir -p models/whisper models/qwen models/checkpoint
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B
# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
huggingface-clie download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt
python3 ./whisper_llm_zh/decode.py \
--max-duration 80 \
--exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
--llm-path-or-name models/qwen \
--epoch 999 --avg 1 \
--manifest-dir data/fbank \
--use-flash-attn True \
--use-lora True --dataset aishell