icefall/egs/timit/ASR/prepare.sh
Peter Ross 62c9dd9703
make egs/timit work according to the documentation (#1044)
* prepare.sh: restore working directory after git lfs pull
* set execute permisons on python scripts called by prepare.sh
2023-05-08 19:07:40 +08:00

160 lines
4.3 KiB
Bash

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
num_phones=39
# Here we use num_phones=39 for modeling
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/timit
# You can find data, train_data.csv, test_data.csv, etc, inside it.
# You can download them from https://data.deepai.org/timit.zip
#
# - $dl_dir/lm
# This directory contains the language model(LM) downloaded from
# https://huggingface.co/luomingshuang/timit_lm, and the LM is based
# on 39 phones. About how to get these LM files, you can know it
# from https://github.com/luomingshuang/Train_LM_with_kaldilm.
#
# - lm_3_gram.arpa
# - lm_4_gram.arpa
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
splits_dir=$PWD/splits_dir
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download LM"
# We assume that you have installed the git-lfs, if not, you could install it
# using: `sudo apt-get install git-lfs && git-lfs install`
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
git clone https://huggingface.co/luomingshuang/timit_lm $dl_dir/lm
pushd $dl_dir/lm
git lfs pull
popd
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/timit,
# you can create a symlink
#
# ln -sfv /path/to/timit $dl_dir/timit
#
if [ ! -d $dl_dir/timit ]; then
lhotse download timit $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare timit manifest"
# We assume that you have downloaded the timit corpus
# to $dl_dir/timit
mkdir -p data/manifests
lhotse prepare timit -p $num_phones -j $nj $dl_dir/timit/data data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for timit"
mkdir -p data/fbank
./local/compute_fbank_timit.py
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
./local/prepare_lexicon.py \
--manifests-dir data/manifests \
--lang-dir $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare G"
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
fi