2022-11-17 09:42:17 -05:00

164 lines
4.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script shows how to get word starting time
from framewise token alignment.
Usage:
./transducer_stateless/compute_ali.py \
--exp-dir ./transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--max-duration 300 \
--dataset train-clean-100 \
--out-dir data/ali
And the you can run:
./transducer_stateless/test_compute_ali.py \
--bpe-model ./data/lang_bpe_500/bpe.model \
--ali-dir data/ali \
--dataset train-clean-100
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from alignment import get_word_starting_frames
from lhotse import CutSet, load_manifest_lazy
from lhotse.dataset import DynamicBucketingSampler, K2SpeechRecognitionDataset
from lhotse.dataset.collation import collate_custom_field
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--ali-dir",
type=Path,
default="./data/ali",
help="It specifies the directory where alignments can be found.",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="""The name of the dataset:
Possible values are:
- test-clean.
- test-other
- train-clean-100
- train-clean-360
- train-other-500
- dev-clean
- dev-other
""",
)
return parser
def main():
args = get_parser().parse_args()
sp = spm.SentencePieceProcessor()
sp.load(args.bpe_model)
cuts_jsonl = args.ali_dir / f"librispeech_cuts_{args.dataset}.jsonl.gz"
logging.info(f"Loading {cuts_jsonl}")
cuts = load_manifest_lazy(cuts_jsonl)
sampler = DynamicBucketingSampler(
cuts,
max_duration=30,
num_buckets=30,
shuffle=False,
)
dataset = K2SpeechRecognitionDataset(return_cuts=True)
dl = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=None,
num_workers=1,
persistent_workers=False,
)
frame_shift = 10 # ms
subsampling_factor = 4
frame_shift_in_second = frame_shift * subsampling_factor / 1000.0
# key: cut.id
# value: a list of pairs (word, time_in_second)
word_starting_time_dict = {}
for batch in dl:
supervisions = batch["supervisions"]
cuts = supervisions["cut"]
token_alignment, token_alignment_length = collate_custom_field(
CutSet.from_cuts(cuts), "token_alignment"
)
for i in range(len(cuts)):
assert (
(cuts[i].features.num_frames - 1) // 2 - 1
) // 2 == token_alignment_length[i]
word_starting_frames = get_word_starting_frames(
token_alignment[i, : token_alignment_length[i]].tolist(), sp=sp
)
word_starting_time = [
"{:.2f}".format(i * frame_shift_in_second) for i in word_starting_frames
]
words = supervisions["text"][i].split()
assert len(word_starting_frames) == len(words)
word_starting_time_dict[cuts[i].id] = list(zip(words, word_starting_time))
# This is a demo script and we exit here after processing
# one batch.
# You can find word starting time in the dict "word_starting_time_dict"
for cut_id, word_time in word_starting_time_dict.items():
print(f"{cut_id}\n{word_time}\n")
break
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()