2023-09-21 21:16:14 +08:00

381 lines
9.6 KiB
Python

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is to test that models can be exported to onnx.
"""
import os
from icefall import is_module_available
if not is_module_available("onnxruntime"):
raise ValueError("Please 'pip install onnxruntime' first.")
import onnxruntime as ort
import torch
from scaling_converter import convert_scaled_to_non_scaled
from zipformer import (
Conv2dSubsampling,
RelPositionalEncoding,
Zipformer,
ZipformerEncoder,
ZipformerEncoderLayer,
)
ort.set_default_logger_severity(3)
def test_conv2d_subsampling():
filename = "conv2d_subsampling.onnx"
opset_version = 13
N = 30
T = 50
num_features = 80
d_model = 512
x = torch.rand(N, T, num_features)
encoder_embed = Conv2dSubsampling(num_features, d_model)
encoder_embed.eval()
encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True)
torch.onnx.export(
encoder_embed,
x,
filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"y": {0: "N", 1: "T"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
assert input_nodes[0].name == "x"
assert input_nodes[0].shape == ["N", "T", num_features]
inputs = {input_nodes[0].name: x.numpy()}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = encoder_embed(x)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
os.remove(filename)
def test_rel_pos():
filename = "rel_pos.onnx"
opset_version = 13
N = 30
T = 50
num_features = 80
d_model = 512
x = torch.rand(N, T, num_features)
encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1)
encoder_pos.eval()
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
x = x.permute(1, 0, 2)
torch.onnx.export(
encoder_pos,
x,
filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["pos_emb"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"pos_emb": {0: "N", 1: "T"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
assert input_nodes[0].name == "x"
assert input_nodes[0].shape == ["N", "T", num_features]
inputs = {input_nodes[0].name: x.numpy()}
onnx_pos_emb = session.run(["pos_emb"], inputs)
onnx_pos_emb = torch.from_numpy(onnx_pos_emb[0])
torch_pos_emb = encoder_pos(x)
assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), (
(onnx_pos_emb - torch_pos_emb).abs().max()
)
print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum())
os.remove(filename)
def test_zipformer_encoder_layer():
filename = "zipformer_encoder_layer.onnx"
opset_version = 13
N = 30
T = 50
d_model = 384
attention_dim = 192
nhead = 8
feedforward_dim = 1024
dropout = 0.1
cnn_module_kernel = 31
pos_dim = 4
x = torch.rand(N, T, d_model)
encoder_pos = RelPositionalEncoding(d_model, dropout)
encoder_pos.eval()
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
x = x.permute(1, 0, 2)
pos_emb = encoder_pos(x)
encoder_layer = ZipformerEncoderLayer(
d_model,
attention_dim,
nhead,
feedforward_dim,
dropout,
cnn_module_kernel,
pos_dim,
)
encoder_layer.eval()
encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True)
torch.onnx.export(
encoder_layer,
(x, pos_emb),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "pos_emb"],
output_names=["y"],
dynamic_axes={
"x": {0: "T", 1: "N"},
"pos_emb": {0: "N", 1: "T"},
"y": {0: "T", 1: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: pos_emb.numpy(),
}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = encoder_layer(x, pos_emb)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
os.remove(filename)
def test_zipformer_encoder():
filename = "zipformer_encoder.onnx"
opset_version = 13
N = 3
T = 15
d_model = 512
attention_dim = 192
nhead = 8
feedforward_dim = 1024
dropout = 0.1
cnn_module_kernel = 31
pos_dim = 4
num_encoder_layers = 12
warmup_batches = 4000.0
warmup_begin = warmup_batches / (num_encoder_layers + 1)
warmup_end = warmup_batches / (num_encoder_layers + 1)
x = torch.rand(N, T, d_model)
encoder_layer = ZipformerEncoderLayer(
d_model,
attention_dim,
nhead,
feedforward_dim,
dropout,
cnn_module_kernel,
pos_dim,
)
encoder = ZipformerEncoder(
encoder_layer, num_encoder_layers, dropout, warmup_begin, warmup_end
)
encoder.eval()
encoder = convert_scaled_to_non_scaled(encoder, inplace=True)
# jit_model = torch.jit.trace(encoder, (pos_emb))
torch_y = encoder(x)
torch.onnx.export(
encoder,
(x, torch.ones(1, dtype=torch.float32)),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "T", 1: "N"},
"y": {0: "T", 1: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: torch.ones(1, dtype=torch.float32).numpy(),
}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = encoder(x)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
os.remove(filename)
def test_zipformer():
filename = "zipformer.onnx"
opset_version = 11
N = 3
T = 15
num_features = 80
x = torch.rand(N, T, num_features)
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
zipformer = Zipformer(num_features=num_features)
zipformer.eval()
zipformer = convert_scaled_to_non_scaled(zipformer, inplace=True)
# jit_model = torch.jit.trace(zipformer, (x, x_lens))
torch.onnx.export(
zipformer,
(x, x_lens),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens"],
output_names=["y", "y_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"y": {0: "N", 1: "T"},
"y_lens": {0: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: x_lens.numpy(),
}
onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs)
onnx_y = torch.from_numpy(onnx_y)
onnx_y_lens = torch.from_numpy(onnx_y_lens)
torch_y, torch_y_lens = zipformer(x, x_lens)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), (
(onnx_y_lens - torch_y_lens).abs().max()
)
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
print(onnx_y_lens, torch_y_lens)
os.remove(filename)
@torch.no_grad()
def main():
test_conv2d_subsampling()
test_rel_pos()
test_zipformer_encoder_layer()
test_zipformer_encoder()
test_zipformer()
if __name__ == "__main__":
torch.manual_seed(20221011)
main()