Zengwei Yao bcc5923ab9
Support batch-wise forced-alignment (#970)
* support batch-wise forced-alignment based on beam search

* add length_norm to HypothesisList.topk()

* Use Hypothesis and HypothesisList instead
2023-03-28 23:24:24 +08:00

207 lines
7.6 KiB
Python

# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import k2
import torch
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
# The force alignment problem can be formulated as finding
# a path in a rectangular lattice, where the path starts
# from the lower left corner and ends at the upper right
# corner. The horizontal axis of the lattice is `t` (representing
# acoustic frame indexes) and the vertical axis is `u` (representing
# BPE tokens of the transcript).
#
# The notations `t` and `u` are from the paper
# https://arxiv.org/pdf/1211.3711.pdf
#
# Beam search is used to find the path with the highest log probabilities.
#
# It assumes the maximum number of symbols that can be
# emitted per frame is 1.
def batch_force_alignment(
model: torch.nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_list: List[List[int]],
beam_size: int = 4,
) -> List[int]:
"""Compute the force alignment of a batch of utterances given their transcripts
in BPE tokens and the corresponding acoustic output from the encoder.
Caution:
This function is modified from `modified_beam_search` in beam_search.py.
We assume that the maximum number of sybmols per frame is 1.
Args:
model:
The transducer model.
encoder_out:
A tensor of shape (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
ys_list:
A list of BPE token IDs list. We require that for each utterance i,
len(ys_list[i]) <= encoder_out_lens[i].
beam_size:
Size of the beam used in beam search.
Returns:
Return a list of frame indexes list for each utterance i,
where len(ans[i]) == len(ys_list[i]).
"""
assert encoder_out.ndim == 3, encoder_out.ndim
assert encoder_out.size(0) == len(ys_list), (encoder_out.size(0), len(ys_list))
assert encoder_out.size(0) > 0, encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = next(model.parameters()).device
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
sorted_indices = packed_encoder_out.sorted_indices.tolist()
encoder_out_lens = encoder_out_lens.tolist()
ys_lens = [len(ys) for ys in ys_list]
sorted_encoder_out_lens = [encoder_out_lens[i] for i in sorted_indices]
sorted_ys_lens = [ys_lens[i] for i in sorted_indices]
sorted_ys_list = [ys_list[i] for i in sorted_indices]
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
timestamp=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for (t, batch_size) in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
sorted_encoder_out_lens = sorted_encoder_out_lens[:batch_size]
sorted_ys_lens = sorted_ys_lens[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out, decoder_out, project_input=False
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(
shape=log_probs_shape, value=log_probs.reshape(-1)
) # [batch][num_hyps*vocab_size]
for i in range(batch_size):
for h, hyp in enumerate(A[i]):
pos_u = len(hyp.timestamp)
idx_offset = h * vocab_size
if (sorted_encoder_out_lens[i] - 1 - t) >= (sorted_ys_lens[i] - pos_u):
# emit blank token
new_hyp = Hypothesis(
log_prob=ragged_log_probs[i][idx_offset + blank_id],
ys=hyp.ys[:],
timestamp=hyp.timestamp[:],
)
B[i].add(new_hyp)
if pos_u < sorted_ys_lens[i]:
# emit non-blank token
new_token = sorted_ys_list[i][pos_u]
new_hyp = Hypothesis(
log_prob=ragged_log_probs[i][idx_offset + new_token],
ys=hyp.ys + [new_token],
timestamp=hyp.timestamp + [t],
)
B[i].add(new_hyp)
if len(B[i]) > beam_size:
B[i] = B[i].topk(beam_size, length_norm=True)
B = B + finalized_B
sorted_hyps = [b.get_most_probable() for b in B]
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
hyps = [sorted_hyps[i] for i in unsorted_indices]
ans = []
for i, hyp in enumerate(hyps):
assert hyp.ys[context_size:] == ys_list[i], (hyp.ys[context_size:], ys_list[i])
ans.append(hyp.timestamp)
return ans