2023-09-21 21:16:14 +08:00

402 lines
11 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is to test that models can be exported to onnx.
"""
import os
from icefall import is_module_available
if not is_module_available("onnxruntime"):
raise ValueError("Please 'pip install onnxruntime' first.")
import onnxruntime as ort
import torch
from conformer import (
Conformer,
ConformerEncoder,
ConformerEncoderLayer,
Conv2dSubsampling,
RelPositionalEncoding,
)
from scaling_converter import convert_scaled_to_non_scaled
from icefall.utils import make_pad_mask
ort.set_default_logger_severity(3)
def test_conv2d_subsampling():
filename = "conv2d_subsampling.onnx"
opset_version = 11
N = 30
T = 50
num_features = 80
d_model = 512
x = torch.rand(N, T, num_features)
encoder_embed = Conv2dSubsampling(num_features, d_model)
encoder_embed.eval()
encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True)
jit_model = torch.jit.trace(encoder_embed, x)
torch.onnx.export(
encoder_embed,
x,
filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"y": {0: "N", 1: "T"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
assert input_nodes[0].name == "x"
assert input_nodes[0].shape == ["N", "T", num_features]
inputs = {input_nodes[0].name: x.numpy()}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = jit_model(x)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
os.remove(filename)
def test_rel_pos():
filename = "rel_pos.onnx"
opset_version = 11
N = 30
T = 50
num_features = 80
d_model = 512
x = torch.rand(N, T, num_features)
encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1)
encoder_pos.eval()
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
jit_model = torch.jit.trace(encoder_pos, x)
torch.onnx.export(
encoder_pos,
(x, torch.zeros(1, dtype=torch.int64)),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x"],
output_names=["y", "pos_emb"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"y": {0: "N", 1: "T"},
"pos_emb": {0: "N", 1: "T"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
assert input_nodes[0].name == "x"
assert input_nodes[0].shape == ["N", "T", num_features]
inputs = {
input_nodes[0].name: x.numpy(),
}
onnx_y, onnx_pos_emb = session.run(["y", "pos_emb"], inputs)
onnx_y = torch.from_numpy(onnx_y)
onnx_pos_emb = torch.from_numpy(onnx_pos_emb)
torch_y, torch_pos_emb = jit_model(x)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), (
(onnx_pos_emb - torch_pos_emb).abs().max()
)
print(onnx_y.abs().sum(), torch_y.abs().sum())
print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum())
os.remove(filename)
def test_conformer_encoder_layer():
filename = "conformer_encoder_layer.onnx"
opset_version = 11
N = 30
T = 50
d_model = 512
nhead = 8
dim_feedforward = 2048
dropout = 0.1
layer_dropout = 0.075
cnn_module_kernel = 31
causal = False
x = torch.rand(N, T, d_model)
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
src_key_padding_mask = make_pad_mask(x_lens)
encoder_pos = RelPositionalEncoding(d_model, dropout)
encoder_pos.eval()
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
x, pos_emb = encoder_pos(x)
x = x.permute(1, 0, 2)
encoder_layer = ConformerEncoderLayer(
d_model,
nhead,
dim_feedforward,
dropout,
layer_dropout,
cnn_module_kernel,
causal,
)
encoder_layer.eval()
encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True)
jit_model = torch.jit.trace(encoder_layer, (x, pos_emb, src_key_padding_mask))
torch.onnx.export(
encoder_layer,
(x, pos_emb, src_key_padding_mask),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "pos_emb", "src_key_padding_mask"],
output_names=["y"],
dynamic_axes={
"x": {0: "T", 1: "N"},
"pos_emb": {0: "N", 1: "T"},
"src_key_padding_mask": {0: "N", 1: "T"},
"y": {0: "T", 1: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: pos_emb.numpy(),
input_nodes[2].name: src_key_padding_mask.numpy(),
}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
os.remove(filename)
def test_conformer_encoder():
filename = "conformer_encoder.onnx"
opset_version = 11
N = 3
T = 15
d_model = 512
nhead = 8
dim_feedforward = 2048
dropout = 0.1
layer_dropout = 0.075
cnn_module_kernel = 31
causal = False
num_encoder_layers = 12
x = torch.rand(N, T, d_model)
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
src_key_padding_mask = make_pad_mask(x_lens)
encoder_pos = RelPositionalEncoding(d_model, dropout)
encoder_pos.eval()
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
x, pos_emb = encoder_pos(x)
x = x.permute(1, 0, 2)
encoder_layer = ConformerEncoderLayer(
d_model,
nhead,
dim_feedforward,
dropout,
layer_dropout,
cnn_module_kernel,
causal,
)
encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
encoder.eval()
encoder = convert_scaled_to_non_scaled(encoder, inplace=True)
jit_model = torch.jit.trace(encoder, (x, pos_emb, src_key_padding_mask))
torch.onnx.export(
encoder,
(x, pos_emb, src_key_padding_mask),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "pos_emb", "src_key_padding_mask"],
output_names=["y"],
dynamic_axes={
"x": {0: "T", 1: "N"},
"pos_emb": {0: "N", 1: "T"},
"src_key_padding_mask": {0: "N", 1: "T"},
"y": {0: "T", 1: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: pos_emb.numpy(),
input_nodes[2].name: src_key_padding_mask.numpy(),
}
onnx_y = session.run(["y"], inputs)[0]
onnx_y = torch.from_numpy(onnx_y)
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
os.remove(filename)
def test_conformer():
filename = "conformer.onnx"
opset_version = 11
N = 3
T = 15
num_features = 80
x = torch.rand(N, T, num_features)
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
conformer = Conformer(num_features=num_features)
conformer.eval()
conformer = convert_scaled_to_non_scaled(conformer, inplace=True)
jit_model = torch.jit.trace(conformer, (x, x_lens))
torch.onnx.export(
conformer,
(x, x_lens),
filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens"],
output_names=["y", "y_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"y": {0: "N", 1: "T"},
"y_lens": {0: "N"},
},
)
options = ort.SessionOptions()
options.inter_op_num_threads = 1
options.intra_op_num_threads = 1
session = ort.InferenceSession(
filename,
sess_options=options,
providers=["CPUExecutionProvider"],
)
input_nodes = session.get_inputs()
inputs = {
input_nodes[0].name: x.numpy(),
input_nodes[1].name: x_lens.numpy(),
}
onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs)
onnx_y = torch.from_numpy(onnx_y)
onnx_y_lens = torch.from_numpy(onnx_y_lens)
torch_y, torch_y_lens = jit_model(x, x_lens)
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), (
(onnx_y_lens - torch_y_lens).abs().max()
)
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
print(onnx_y_lens, torch_y_lens)
os.remove(filename)
@torch.no_grad()
def main():
test_conv2d_subsampling()
test_rel_pos()
test_conformer_encoder_layer()
test_conformer_encoder()
test_conformer()
if __name__ == "__main__":
torch.manual_seed(20221011)
main()