mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
402 lines
11 KiB
Python
Executable File
402 lines
11 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
"""
|
|
This file is to test that models can be exported to onnx.
|
|
"""
|
|
import os
|
|
|
|
from icefall import is_module_available
|
|
|
|
if not is_module_available("onnxruntime"):
|
|
raise ValueError("Please 'pip install onnxruntime' first.")
|
|
|
|
import onnxruntime as ort
|
|
import torch
|
|
from conformer import (
|
|
Conformer,
|
|
ConformerEncoder,
|
|
ConformerEncoderLayer,
|
|
Conv2dSubsampling,
|
|
RelPositionalEncoding,
|
|
)
|
|
from scaling_converter import convert_scaled_to_non_scaled
|
|
|
|
from icefall.utils import make_pad_mask
|
|
|
|
ort.set_default_logger_severity(3)
|
|
|
|
|
|
def test_conv2d_subsampling():
|
|
filename = "conv2d_subsampling.onnx"
|
|
opset_version = 11
|
|
N = 30
|
|
T = 50
|
|
num_features = 80
|
|
d_model = 512
|
|
x = torch.rand(N, T, num_features)
|
|
|
|
encoder_embed = Conv2dSubsampling(num_features, d_model)
|
|
encoder_embed.eval()
|
|
encoder_embed = convert_scaled_to_non_scaled(encoder_embed, inplace=True)
|
|
|
|
jit_model = torch.jit.trace(encoder_embed, x)
|
|
|
|
torch.onnx.export(
|
|
encoder_embed,
|
|
x,
|
|
filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x"],
|
|
output_names=["y"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"y": {0: "N", 1: "T"},
|
|
},
|
|
)
|
|
|
|
options = ort.SessionOptions()
|
|
options.inter_op_num_threads = 1
|
|
options.intra_op_num_threads = 1
|
|
|
|
session = ort.InferenceSession(
|
|
filename,
|
|
sess_options=options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
input_nodes = session.get_inputs()
|
|
assert input_nodes[0].name == "x"
|
|
assert input_nodes[0].shape == ["N", "T", num_features]
|
|
|
|
inputs = {input_nodes[0].name: x.numpy()}
|
|
|
|
onnx_y = session.run(["y"], inputs)[0]
|
|
|
|
onnx_y = torch.from_numpy(onnx_y)
|
|
torch_y = jit_model(x)
|
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
def test_rel_pos():
|
|
filename = "rel_pos.onnx"
|
|
|
|
opset_version = 11
|
|
N = 30
|
|
T = 50
|
|
num_features = 80
|
|
d_model = 512
|
|
x = torch.rand(N, T, num_features)
|
|
|
|
encoder_pos = RelPositionalEncoding(d_model, dropout_rate=0.1)
|
|
encoder_pos.eval()
|
|
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
|
|
|
jit_model = torch.jit.trace(encoder_pos, x)
|
|
|
|
torch.onnx.export(
|
|
encoder_pos,
|
|
(x, torch.zeros(1, dtype=torch.int64)),
|
|
filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x"],
|
|
output_names=["y", "pos_emb"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"y": {0: "N", 1: "T"},
|
|
"pos_emb": {0: "N", 1: "T"},
|
|
},
|
|
)
|
|
|
|
options = ort.SessionOptions()
|
|
options.inter_op_num_threads = 1
|
|
options.intra_op_num_threads = 1
|
|
|
|
session = ort.InferenceSession(
|
|
filename,
|
|
sess_options=options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
input_nodes = session.get_inputs()
|
|
assert input_nodes[0].name == "x"
|
|
assert input_nodes[0].shape == ["N", "T", num_features]
|
|
|
|
inputs = {
|
|
input_nodes[0].name: x.numpy(),
|
|
}
|
|
onnx_y, onnx_pos_emb = session.run(["y", "pos_emb"], inputs)
|
|
onnx_y = torch.from_numpy(onnx_y)
|
|
onnx_pos_emb = torch.from_numpy(onnx_pos_emb)
|
|
|
|
torch_y, torch_pos_emb = jit_model(x)
|
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
|
|
|
assert torch.allclose(onnx_pos_emb, torch_pos_emb, atol=1e-05), (
|
|
(onnx_pos_emb - torch_pos_emb).abs().max()
|
|
)
|
|
print(onnx_y.abs().sum(), torch_y.abs().sum())
|
|
print(onnx_pos_emb.abs().sum(), torch_pos_emb.abs().sum())
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
def test_conformer_encoder_layer():
|
|
filename = "conformer_encoder_layer.onnx"
|
|
opset_version = 11
|
|
N = 30
|
|
T = 50
|
|
|
|
d_model = 512
|
|
nhead = 8
|
|
dim_feedforward = 2048
|
|
dropout = 0.1
|
|
layer_dropout = 0.075
|
|
cnn_module_kernel = 31
|
|
causal = False
|
|
|
|
x = torch.rand(N, T, d_model)
|
|
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
|
|
encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
encoder_pos.eval()
|
|
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
|
|
|
x, pos_emb = encoder_pos(x)
|
|
x = x.permute(1, 0, 2)
|
|
|
|
encoder_layer = ConformerEncoderLayer(
|
|
d_model,
|
|
nhead,
|
|
dim_feedforward,
|
|
dropout,
|
|
layer_dropout,
|
|
cnn_module_kernel,
|
|
causal,
|
|
)
|
|
encoder_layer.eval()
|
|
encoder_layer = convert_scaled_to_non_scaled(encoder_layer, inplace=True)
|
|
|
|
jit_model = torch.jit.trace(encoder_layer, (x, pos_emb, src_key_padding_mask))
|
|
|
|
torch.onnx.export(
|
|
encoder_layer,
|
|
(x, pos_emb, src_key_padding_mask),
|
|
filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x", "pos_emb", "src_key_padding_mask"],
|
|
output_names=["y"],
|
|
dynamic_axes={
|
|
"x": {0: "T", 1: "N"},
|
|
"pos_emb": {0: "N", 1: "T"},
|
|
"src_key_padding_mask": {0: "N", 1: "T"},
|
|
"y": {0: "T", 1: "N"},
|
|
},
|
|
)
|
|
|
|
options = ort.SessionOptions()
|
|
options.inter_op_num_threads = 1
|
|
options.intra_op_num_threads = 1
|
|
|
|
session = ort.InferenceSession(
|
|
filename,
|
|
sess_options=options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
input_nodes = session.get_inputs()
|
|
inputs = {
|
|
input_nodes[0].name: x.numpy(),
|
|
input_nodes[1].name: pos_emb.numpy(),
|
|
input_nodes[2].name: src_key_padding_mask.numpy(),
|
|
}
|
|
onnx_y = session.run(["y"], inputs)[0]
|
|
onnx_y = torch.from_numpy(onnx_y)
|
|
|
|
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
|
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
|
|
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
def test_conformer_encoder():
|
|
filename = "conformer_encoder.onnx"
|
|
|
|
opset_version = 11
|
|
N = 3
|
|
T = 15
|
|
|
|
d_model = 512
|
|
nhead = 8
|
|
dim_feedforward = 2048
|
|
dropout = 0.1
|
|
layer_dropout = 0.075
|
|
cnn_module_kernel = 31
|
|
causal = False
|
|
num_encoder_layers = 12
|
|
|
|
x = torch.rand(N, T, d_model)
|
|
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
|
|
encoder_pos = RelPositionalEncoding(d_model, dropout)
|
|
encoder_pos.eval()
|
|
encoder_pos = convert_scaled_to_non_scaled(encoder_pos, inplace=True)
|
|
|
|
x, pos_emb = encoder_pos(x)
|
|
x = x.permute(1, 0, 2)
|
|
|
|
encoder_layer = ConformerEncoderLayer(
|
|
d_model,
|
|
nhead,
|
|
dim_feedforward,
|
|
dropout,
|
|
layer_dropout,
|
|
cnn_module_kernel,
|
|
causal,
|
|
)
|
|
encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
|
encoder.eval()
|
|
encoder = convert_scaled_to_non_scaled(encoder, inplace=True)
|
|
|
|
jit_model = torch.jit.trace(encoder, (x, pos_emb, src_key_padding_mask))
|
|
|
|
torch.onnx.export(
|
|
encoder,
|
|
(x, pos_emb, src_key_padding_mask),
|
|
filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x", "pos_emb", "src_key_padding_mask"],
|
|
output_names=["y"],
|
|
dynamic_axes={
|
|
"x": {0: "T", 1: "N"},
|
|
"pos_emb": {0: "N", 1: "T"},
|
|
"src_key_padding_mask": {0: "N", 1: "T"},
|
|
"y": {0: "T", 1: "N"},
|
|
},
|
|
)
|
|
|
|
options = ort.SessionOptions()
|
|
options.inter_op_num_threads = 1
|
|
options.intra_op_num_threads = 1
|
|
|
|
session = ort.InferenceSession(
|
|
filename,
|
|
sess_options=options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
input_nodes = session.get_inputs()
|
|
inputs = {
|
|
input_nodes[0].name: x.numpy(),
|
|
input_nodes[1].name: pos_emb.numpy(),
|
|
input_nodes[2].name: src_key_padding_mask.numpy(),
|
|
}
|
|
onnx_y = session.run(["y"], inputs)[0]
|
|
onnx_y = torch.from_numpy(onnx_y)
|
|
|
|
torch_y = jit_model(x, pos_emb, src_key_padding_mask)
|
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
|
|
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
def test_conformer():
|
|
filename = "conformer.onnx"
|
|
opset_version = 11
|
|
N = 3
|
|
T = 15
|
|
num_features = 80
|
|
x = torch.rand(N, T, num_features)
|
|
x_lens = torch.full((N,), fill_value=T, dtype=torch.int64)
|
|
|
|
conformer = Conformer(num_features=num_features)
|
|
conformer.eval()
|
|
conformer = convert_scaled_to_non_scaled(conformer, inplace=True)
|
|
|
|
jit_model = torch.jit.trace(conformer, (x, x_lens))
|
|
torch.onnx.export(
|
|
conformer,
|
|
(x, x_lens),
|
|
filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x", "x_lens"],
|
|
output_names=["y", "y_lens"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"x_lens": {0: "N"},
|
|
"y": {0: "N", 1: "T"},
|
|
"y_lens": {0: "N"},
|
|
},
|
|
)
|
|
options = ort.SessionOptions()
|
|
options.inter_op_num_threads = 1
|
|
options.intra_op_num_threads = 1
|
|
|
|
session = ort.InferenceSession(
|
|
filename,
|
|
sess_options=options,
|
|
providers=["CPUExecutionProvider"],
|
|
)
|
|
|
|
input_nodes = session.get_inputs()
|
|
inputs = {
|
|
input_nodes[0].name: x.numpy(),
|
|
input_nodes[1].name: x_lens.numpy(),
|
|
}
|
|
onnx_y, onnx_y_lens = session.run(["y", "y_lens"], inputs)
|
|
onnx_y = torch.from_numpy(onnx_y)
|
|
onnx_y_lens = torch.from_numpy(onnx_y_lens)
|
|
|
|
torch_y, torch_y_lens = jit_model(x, x_lens)
|
|
assert torch.allclose(onnx_y, torch_y, atol=1e-05), (onnx_y - torch_y).abs().max()
|
|
|
|
assert torch.allclose(onnx_y_lens, torch_y_lens, atol=1e-05), (
|
|
(onnx_y_lens - torch_y_lens).abs().max()
|
|
)
|
|
print(onnx_y.abs().sum(), torch_y.abs().sum(), onnx_y.shape, torch_y.shape)
|
|
print(onnx_y_lens, torch_y_lens)
|
|
|
|
os.remove(filename)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
test_conv2d_subsampling()
|
|
test_rel_pos()
|
|
test_conformer_encoder_layer()
|
|
test_conformer_encoder()
|
|
test_conformer()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.manual_seed(20221011)
|
|
main()
|