mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 01:22:22 +00:00
* Use torch.jit.script() to export the decoder model See also https://github.com/k2-fsa/sherpa-onnx/issues/327
529 lines
15 KiB
Python
Executable File
529 lines
15 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
|
|
"""
|
|
This script exports a transducer model from PyTorch to ONNX.
|
|
|
|
We use the pre-trained model from
|
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
|
|
as an example to show how to use this file.
|
|
|
|
1. Download the pre-trained model
|
|
|
|
cd egs/librispeech/ASR
|
|
|
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
|
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
|
repo=$(basename $repo_url)
|
|
|
|
pushd $repo
|
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
|
git lfs pull --include "exp/pretrained.pt"
|
|
|
|
cd exp
|
|
ln -s pretrained.pt epoch-9999.pt
|
|
popd
|
|
|
|
2. Export the model to ONNX
|
|
|
|
./pruned_transducer_stateless/export-onnx.py \
|
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
|
--epoch 9999 \
|
|
--avg 1 \
|
|
--exp-dir $repo/exp/
|
|
|
|
It will generate the following 3 files inside $repo/exp:
|
|
|
|
- encoder-epoch-9999-avg-1.onnx
|
|
- decoder-epoch-9999-avg-1.onnx
|
|
- joiner-epoch-9999-avg-1.onnx
|
|
|
|
See ./onnx_pretrained.py and ./onnx_check.py for how to
|
|
use the exported ONNX models.
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Dict, Tuple
|
|
|
|
import onnx
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.nn as nn
|
|
from conformer import Conformer
|
|
from decoder import Decoder
|
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
|
from train import add_model_arguments, get_params, get_transducer_model
|
|
|
|
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
|
from icefall.utils import setup_logger
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="""It specifies the checkpoint to use for averaging.
|
|
Note: Epoch counts from 0.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="pruned_transducer_stateless/exp",
|
|
help="""It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
|
"""Add meta data to an ONNX model. It is changed in-place.
|
|
|
|
Args:
|
|
filename:
|
|
Filename of the ONNX model to be changed.
|
|
meta_data:
|
|
Key-value pairs.
|
|
"""
|
|
model = onnx.load(filename)
|
|
for key, value in meta_data.items():
|
|
meta = model.metadata_props.add()
|
|
meta.key = key
|
|
meta.value = value
|
|
|
|
onnx.save(model, filename)
|
|
|
|
|
|
class OnnxEncoder(nn.Module):
|
|
"""A wrapper for Conformer"""
|
|
|
|
def __init__(self, encoder: Conformer):
|
|
"""
|
|
Args:
|
|
encoder:
|
|
A Conformer encoder.
|
|
"""
|
|
super().__init__()
|
|
self.encoder = encoder
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Please see the help information of Conformer.forward
|
|
|
|
Args:
|
|
x:
|
|
A 3-D tensor of shape (N, T, C)
|
|
x_lens:
|
|
A 1-D tensor of shape (N,). Its dtype is torch.int64
|
|
Returns:
|
|
Return a tuple containing:
|
|
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
|
|
- encoder_out_lens, A 1-D tensor of shape (N,)
|
|
"""
|
|
encoder_out, encoder_out_lens = self.encoder(x, x_lens)
|
|
# Now encoder_out is of shape (N, T, joiner_dim)
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
|
|
class OnnxDecoder(nn.Module):
|
|
"""A wrapper for Decoder"""
|
|
|
|
def __init__(self, decoder: Decoder):
|
|
super().__init__()
|
|
self.decoder = decoder
|
|
|
|
def forward(self, y: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
y:
|
|
A 2-D tensor of shape (N, context_size).
|
|
Returns
|
|
Return a 2-D tensor of shape (N, joiner_dim)
|
|
"""
|
|
need_pad = False
|
|
decoder_output = self.decoder(y, need_pad=need_pad)
|
|
output = decoder_output.squeeze(1)
|
|
|
|
return output
|
|
|
|
|
|
class OnnxJoiner(nn.Module):
|
|
"""A wrapper for the joiner"""
|
|
|
|
def __init__(self, inner_linear: nn.Linear, output_linear: nn.Linear):
|
|
super().__init__()
|
|
self.inner_linear = inner_linear
|
|
self.output_linear = output_linear
|
|
|
|
def forward(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
encoder_out:
|
|
A 2-D tensor of shape (N, joiner_dim)
|
|
decoder_out:
|
|
A 2-D tensor of shape (N, joiner_dim)
|
|
Returns:
|
|
Return a 2-D tensor of shape (N, vocab_size)
|
|
"""
|
|
logit = encoder_out + decoder_out
|
|
logit = self.inner_linear(torch.tanh(logit))
|
|
output = self.output_linear(nn.functional.relu(logit))
|
|
|
|
return output
|
|
|
|
|
|
def export_encoder_model_onnx(
|
|
encoder_model: OnnxEncoder,
|
|
encoder_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the given encoder model to ONNX format.
|
|
The exported model has two inputs:
|
|
|
|
- x, a tensor of shape (N, T, C); dtype is torch.float32
|
|
- x_lens, a tensor of shape (N,); dtype is torch.int64
|
|
|
|
and it has two outputs:
|
|
|
|
- encoder_out, a tensor of shape (N, T', joiner_dim)
|
|
- encoder_out_lens, a tensor of shape (N,)
|
|
|
|
Args:
|
|
encoder_model:
|
|
The input encoder model
|
|
encoder_filename:
|
|
The filename to save the exported ONNX model.
|
|
opset_version:
|
|
The opset version to use.
|
|
"""
|
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
|
|
|
torch.onnx.export(
|
|
encoder_model,
|
|
(x, x_lens),
|
|
encoder_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["x", "x_lens"],
|
|
output_names=["encoder_out", "encoder_out_lens"],
|
|
dynamic_axes={
|
|
"x": {0: "N", 1: "T"},
|
|
"x_lens": {0: "N"},
|
|
"encoder_out": {0: "N", 1: "T"},
|
|
"encoder_out_lens": {0: "N"},
|
|
},
|
|
)
|
|
|
|
meta_data = {
|
|
"model_type": "conformer",
|
|
"version": "1",
|
|
"model_author": "k2-fsa",
|
|
"comment": "stateless3",
|
|
}
|
|
logging.info(f"meta_data: {meta_data}")
|
|
|
|
add_meta_data(filename=encoder_filename, meta_data=meta_data)
|
|
|
|
|
|
def export_decoder_model_onnx(
|
|
decoder_model: OnnxDecoder,
|
|
decoder_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the decoder model to ONNX format.
|
|
|
|
The exported model has one input:
|
|
|
|
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
|
|
|
|
and has one output:
|
|
|
|
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
|
|
|
|
Args:
|
|
decoder_model:
|
|
The decoder model to be exported.
|
|
decoder_filename:
|
|
Filename to save the exported ONNX model.
|
|
opset_version:
|
|
The opset version to use.
|
|
"""
|
|
context_size = decoder_model.decoder.context_size
|
|
vocab_size = decoder_model.decoder.vocab_size
|
|
|
|
y = torch.zeros(10, context_size, dtype=torch.int64)
|
|
decoder_model = torch.jit.script(decoder_model)
|
|
torch.onnx.export(
|
|
decoder_model,
|
|
y,
|
|
decoder_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=["y"],
|
|
output_names=["decoder_out"],
|
|
dynamic_axes={
|
|
"y": {0: "N"},
|
|
"decoder_out": {0: "N"},
|
|
},
|
|
)
|
|
|
|
meta_data = {
|
|
"context_size": str(context_size),
|
|
"vocab_size": str(vocab_size),
|
|
}
|
|
add_meta_data(filename=decoder_filename, meta_data=meta_data)
|
|
|
|
|
|
def export_joiner_model_onnx(
|
|
joiner_model: nn.Module,
|
|
joiner_filename: str,
|
|
opset_version: int = 11,
|
|
) -> None:
|
|
"""Export the joiner model to ONNX format.
|
|
The exported joiner model has two inputs:
|
|
|
|
- encoder_out: a tensor of shape (N, joiner_dim)
|
|
- decoder_out: a tensor of shape (N, joiner_dim)
|
|
|
|
and produces one output:
|
|
|
|
- logit: a tensor of shape (N, vocab_size)
|
|
"""
|
|
joiner_dim = joiner_model.inner_linear.weight.shape[1]
|
|
logging.info(f"joiner dim: {joiner_dim}")
|
|
|
|
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
|
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
|
|
|
|
torch.onnx.export(
|
|
joiner_model,
|
|
(projected_encoder_out, projected_decoder_out),
|
|
joiner_filename,
|
|
verbose=False,
|
|
opset_version=opset_version,
|
|
input_names=[
|
|
"encoder_out",
|
|
"decoder_out",
|
|
],
|
|
output_names=["logit"],
|
|
dynamic_axes={
|
|
"encoder_out": {0: "N"},
|
|
"decoder_out": {0: "N"},
|
|
"logit": {0: "N"},
|
|
},
|
|
)
|
|
meta_data = {
|
|
"joiner_dim": str(joiner_dim),
|
|
}
|
|
add_meta_data(filename=joiner_filename, meta_data=meta_data)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
args = get_parser().parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
setup_logger(f"{params.exp_dir}/log-export/log-export-onnx")
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_transducer_model(params)
|
|
|
|
model.to(device)
|
|
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints(filenames, device=device), strict=False
|
|
)
|
|
|
|
model.to("cpu")
|
|
model.eval()
|
|
|
|
encoder = OnnxEncoder(encoder=model.encoder)
|
|
|
|
decoder = OnnxDecoder(decoder=model.decoder)
|
|
|
|
joiner = OnnxJoiner(
|
|
inner_linear=model.joiner.inner_linear, output_linear=model.joiner.output_linear
|
|
)
|
|
|
|
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
|
|
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
|
|
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
|
|
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
|
|
logging.info(f"encoder parameters: {encoder_num_param}")
|
|
logging.info(f"decoder parameters: {decoder_num_param}")
|
|
logging.info(f"joiner parameters: {joiner_num_param}")
|
|
logging.info(f"total parameters: {total_num_param}")
|
|
|
|
if params.iter > 0:
|
|
suffix = f"iter-{params.iter}"
|
|
else:
|
|
suffix = f"epoch-{params.epoch}"
|
|
|
|
suffix += f"-avg-{params.avg}"
|
|
|
|
opset_version = 13
|
|
|
|
logging.info("Exporting encoder")
|
|
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
|
|
export_encoder_model_onnx(
|
|
encoder,
|
|
encoder_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
logging.info(f"Exported encoder to {encoder_filename}")
|
|
|
|
logging.info("Exporting decoder")
|
|
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
|
|
export_decoder_model_onnx(
|
|
decoder,
|
|
decoder_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
logging.info(f"Exported decoder to {decoder_filename}")
|
|
|
|
logging.info("Exporting joiner")
|
|
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
|
|
export_joiner_model_onnx(
|
|
joiner,
|
|
joiner_filename,
|
|
opset_version=opset_version,
|
|
)
|
|
logging.info(f"Exported joiner to {joiner_filename}")
|
|
|
|
# Generate int8 quantization models
|
|
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
|
|
|
logging.info("Generate int8 quantization models")
|
|
|
|
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
|
|
quantize_dynamic(
|
|
model_input=encoder_filename,
|
|
model_output=encoder_filename_int8,
|
|
op_types_to_quantize=["MatMul"],
|
|
weight_type=QuantType.QInt8,
|
|
)
|
|
|
|
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
|
|
quantize_dynamic(
|
|
model_input=decoder_filename,
|
|
model_output=decoder_filename_int8,
|
|
op_types_to_quantize=["MatMul", "Gather"],
|
|
weight_type=QuantType.QInt8,
|
|
)
|
|
|
|
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
|
|
quantize_dynamic(
|
|
model_input=joiner_filename,
|
|
model_output=joiner_filename_int8,
|
|
op_types_to_quantize=["MatMul"],
|
|
weight_type=QuantType.QInt8,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
main()
|