352 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
# flake8: noqa
#
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Please see
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
for usage
"""
import argparse
import logging
from typing import List, Optional
import k2
import ncnn
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)
parser.add_argument(
"--encoder-param-filename",
type=str,
help="Path to encoder.ncnn.param",
)
parser.add_argument(
"--encoder-bin-filename",
type=str,
help="Path to encoder.ncnn.bin",
)
parser.add_argument(
"--decoder-param-filename",
type=str,
help="Path to decoder.ncnn.param",
)
parser.add_argument(
"--decoder-bin-filename",
type=str,
help="Path to decoder.ncnn.bin",
)
parser.add_argument(
"--joiner-param-filename",
type=str,
help="Path to joiner.ncnn.param",
)
parser.add_argument(
"--joiner-bin-filename",
type=str,
help="Path to joiner.ncnn.bin",
)
parser.add_argument(
"sound_filename",
type=str,
help="Path to foo.wav",
)
return parser.parse_args()
class Model:
def __init__(self, args):
self.init_encoder(args)
self.init_decoder(args)
self.init_joiner(args)
def init_encoder(self, args):
encoder_net = ncnn.Net()
encoder_net.opt.use_packing_layout = False
encoder_net.opt.use_fp16_storage = False
encoder_net.opt.num_threads = 4
encoder_param = args.encoder_param_filename
encoder_model = args.encoder_bin_filename
encoder_net.load_param(encoder_param)
encoder_net.load_model(encoder_model)
self.encoder_net = encoder_net
def init_decoder(self, args):
decoder_param = args.decoder_param_filename
decoder_model = args.decoder_bin_filename
decoder_net = ncnn.Net()
decoder_net.opt.use_packing_layout = False
decoder_net.opt.num_threads = 4
decoder_net.load_param(decoder_param)
decoder_net.load_model(decoder_model)
self.decoder_net = decoder_net
def init_joiner(self, args):
joiner_param = args.joiner_param_filename
joiner_model = args.joiner_bin_filename
joiner_net = ncnn.Net()
joiner_net.opt.use_packing_layout = False
joiner_net.opt.num_threads = 4
joiner_net.load_param(joiner_param)
joiner_net.load_model(joiner_model)
self.joiner_net = joiner_net
def run_encoder(self, x, states):
with self.encoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(x.numpy()).clone())
x_lens = torch.tensor([x.size(0)], dtype=torch.float32)
ex.input("in1", ncnn.Mat(x_lens.numpy()).clone())
ex.input("in2", ncnn.Mat(states[0].numpy()).clone())
ex.input("in3", ncnn.Mat(states[1].numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
ret, ncnn_out1 = ex.extract("out1")
assert ret == 0, ret
ret, ncnn_out2 = ex.extract("out2")
assert ret == 0, ret
ret, ncnn_out3 = ex.extract("out3")
assert ret == 0, ret
encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32)
hx = torch.from_numpy(ncnn_out2.numpy()).clone()
cx = torch.from_numpy(ncnn_out3.numpy()).clone()
return encoder_out, encoder_out_lens, hx, cx
def run_decoder(self, decoder_input):
assert decoder_input.dtype == torch.int32
with self.decoder_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return decoder_out
def run_joiner(self, encoder_out, decoder_out):
with self.joiner_net.create_extractor() as ex:
ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone())
ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone())
ret, ncnn_out0 = ex.extract("out0")
assert ret == 0, ret
joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone()
return joiner_out
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: Model,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
):
assert encoder_out.ndim == 1
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
else:
assert decoder_out.ndim == 1
assert hyp is not None, hyp
joiner_out = model.run_joiner(encoder_out, decoder_out)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(decoder_input, dtype=torch.int32)
decoder_out = model.run_decoder(decoder_input).squeeze(0)
return hyp, decoder_out
def main():
args = get_args()
logging.info(vars(args))
model = Model(args)
sound_file = args.sound_filename
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {sound_file}")
wave_samples = read_sound_files(
filenames=[sound_file],
expected_sample_rate=sample_rate,
)[0]
logging.info(wave_samples.shape)
num_encoder_layers = 12
batch_size = 1
d_model = 512
rnn_hidden_size = 1024
states = (
torch.zeros(num_encoder_layers, batch_size, d_model),
torch.zeros(
num_encoder_layers,
batch_size,
rnn_hidden_size,
),
)
hyp = None
decoder_out = None
num_processed_frames = 0
segment = 9
offset = 4
chunk = 3200 # 0.2 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
states = (hx, cx)
hyp, decoder_out = greedy_search(
model, encoder_out.squeeze(0), decoder_out, hyp
)
online_fbank.accept_waveform(
sampling_rate=sample_rate, waveform=torch.zeros(8000, dtype=torch.int32)
)
online_fbank.input_finished()
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
encoder_out, encoder_out_lens, hx, cx = model.run_encoder(frames, states)
states = (hx, cx)
hyp, decoder_out = greedy_search(
model, encoder_out.squeeze(0), decoder_out, hyp
)
symbol_table = k2.SymbolTable.from_file(args.tokens)
context_size = 2
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("", " ").strip()
logging.info(sound_file)
logging.info(text)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()