mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
712 lines
24 KiB
Python
Executable File
712 lines
24 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||
# Fangjun Kuang,
|
||
# Wei Kang)
|
||
# 2024 Yuekai Zhang
|
||
#
|
||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
Usage:
|
||
# Command for decoding using fine-tuned models:
|
||
|
||
pip install huggingface_hub['cli']
|
||
mkdir -p models/whisper models/qwen models/checkpoint
|
||
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B
|
||
|
||
# For aishell fine-tuned whisper model
|
||
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
|
||
# For multi-hans fine-tuned whisper model
|
||
# huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt
|
||
|
||
huggingface-cli download --local-dir models/qwen Qwen/Qwen2-7B-Instruct
|
||
|
||
mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
|
||
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt
|
||
|
||
python3 ./whisper_llm_zh/decode.py \
|
||
--max-duration 80 \
|
||
--exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
|
||
--speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
|
||
--llm-path-or-name models/qwen \
|
||
--epoch 999 --avg 1 \
|
||
--manifest-dir data/fbank \
|
||
--use-flash-attn True \
|
||
--use-lora True --dataset aishell
|
||
"""
|
||
|
||
import argparse
|
||
import logging
|
||
from collections import defaultdict
|
||
from pathlib import Path
|
||
from typing import Dict, List, Optional, Tuple
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import transformers
|
||
import whisper
|
||
from data_module import AsrDataModule
|
||
from lhotse.cut import Cut
|
||
from model import SPEECH_LLM, EncoderProjector
|
||
|
||
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
||
from train import DEFAULT_SPEECH_TOKEN
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config
|
||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||
from train import add_model_arguments
|
||
from icefall.env import get_env_info
|
||
from icefall.utils import (
|
||
AttributeDict,
|
||
setup_logger,
|
||
store_transcripts,
|
||
str2bool,
|
||
write_error_stats,
|
||
)
|
||
|
||
def average_checkpoints(
|
||
filenames: List[Path], device: torch.device = torch.device("cpu")
|
||
) -> dict:
|
||
"""Average a list of checkpoints.
|
||
The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict.
|
||
|
||
Args:
|
||
filenames:
|
||
Filenames of the checkpoints to be averaged. We assume all
|
||
checkpoints are saved by :func:`save_checkpoint`.
|
||
device:
|
||
Move checkpoints to this device before averaging.
|
||
Returns:
|
||
Return a dict (i.e., state_dict) which is the average of all
|
||
model state dicts contained in the checkpoints.
|
||
"""
|
||
n = len(filenames)
|
||
|
||
if "model" in torch.load(filenames[0], map_location=device):
|
||
avg = torch.load(filenames[0], map_location=device)["model"]
|
||
else:
|
||
avg = torch.load(filenames[0], map_location=device)
|
||
|
||
# Identify shared parameters. Two parameters are said to be shared
|
||
# if they have the same data_ptr
|
||
uniqued: Dict[int, str] = dict()
|
||
|
||
for k, v in avg.items():
|
||
v_data_ptr = v.data_ptr()
|
||
if v_data_ptr in uniqued:
|
||
continue
|
||
uniqued[v_data_ptr] = k
|
||
|
||
uniqued_names = list(uniqued.values())
|
||
|
||
for i in range(1, n):
|
||
if "model" in torch.load(filenames[i], map_location=device):
|
||
state_dict = torch.load(filenames[i], map_location=device)["model"]
|
||
else:
|
||
state_dict = torch.load(filenames[i], map_location=device)
|
||
for k in uniqued_names:
|
||
avg[k] += state_dict[k]
|
||
|
||
for k in uniqued_names:
|
||
if avg[k].is_floating_point():
|
||
avg[k] /= n
|
||
else:
|
||
avg[k] //= n
|
||
|
||
return avg
|
||
|
||
|
||
def get_parser():
|
||
parser = argparse.ArgumentParser(
|
||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--epoch",
|
||
type=int,
|
||
default=-1,
|
||
help="It specifies the checkpoint to use for decoding."
|
||
"Note: Epoch counts from 0.",
|
||
)
|
||
parser.add_argument(
|
||
"--avg",
|
||
type=int,
|
||
default=1,
|
||
help="Number of checkpoints to average. Automatically select "
|
||
"consecutive checkpoints before the checkpoint specified by "
|
||
"'--epoch'. ",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--method",
|
||
type=str,
|
||
default="beam-search",
|
||
help="""Decoding method.
|
||
Supported values are:
|
||
- beam-search
|
||
""",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--beam-size",
|
||
type=int,
|
||
default=1,
|
||
help="beam size for beam search decoding",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--exp-dir",
|
||
type=str,
|
||
default="whisper/exp",
|
||
help="The experiment dir",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--remove-whisper-encoder-input-length-restriction",
|
||
type=str2bool,
|
||
default=True,
|
||
help="replace whisper encoder forward method to remove input length restriction",
|
||
)
|
||
|
||
# parser.add_argument(
|
||
# "--dataset",
|
||
# type=str,
|
||
# default="aishell",
|
||
# choices=["aishell", "speechio", "wenetspeech_test_meeting", "multi_hans_zh"],
|
||
# help="The dataset to decode",
|
||
# )
|
||
|
||
add_model_arguments(parser)
|
||
return parser
|
||
|
||
|
||
def get_params() -> AttributeDict:
|
||
params = AttributeDict(
|
||
{
|
||
"env_info": get_env_info(),
|
||
}
|
||
)
|
||
return params
|
||
|
||
|
||
def decode_one_batch(
|
||
params: AttributeDict,
|
||
model: nn.Module,
|
||
tokenizer: AutoTokenizer,
|
||
batch: dict,
|
||
) -> Dict[str, List[List[int]]]:
|
||
"""Decode one batch and return the result in a dict. The dict has the
|
||
following format:
|
||
|
||
- key: "beam-search"
|
||
- value: A list of lists. Each sublist is a list of token IDs.
|
||
Args:
|
||
params:
|
||
It is returned by :func:`get_params`.
|
||
model:
|
||
The neural model.
|
||
batch:
|
||
It is returned by :meth:`torch.utils.data.DataLoader.__iter__`.
|
||
Returns:
|
||
Return a dict, whose key may be "beam-search".
|
||
"""
|
||
|
||
def preprocess(
|
||
messages,
|
||
tokenizer: transformers.PreTrainedTokenizer,
|
||
) -> Dict:
|
||
"""Preprocesses the data for supervised fine-tuning."""
|
||
texts = []
|
||
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||
for i, msg in enumerate(messages):
|
||
texts.append(
|
||
tokenizer.apply_chat_template(
|
||
msg,
|
||
tokenize=True,
|
||
add_generation_prompt=False,
|
||
chat_template=TEMPLATE,
|
||
padding="longest",
|
||
truncation=False,
|
||
)
|
||
)
|
||
max_len_texts = max([len(text) for text in texts])
|
||
if tokenizer.padding_side == "right":
|
||
texts = [
|
||
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||
for text in texts
|
||
]
|
||
else:
|
||
texts = [
|
||
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||
for text in texts
|
||
]
|
||
|
||
input_ids = torch.tensor(texts, dtype=torch.int)
|
||
|
||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||
|
||
return input_ids, attention_mask
|
||
|
||
dtype = torch.float32
|
||
device = model.llm.device
|
||
|
||
feature = batch["inputs"]
|
||
assert feature.ndim == 3
|
||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||
if not params.remove_whisper_encoder_input_length_restriction:
|
||
T = 3000
|
||
if feature.shape[2] < T:
|
||
feature = torch.cat(
|
||
[
|
||
feature,
|
||
torch.zeros(
|
||
feature.shape[0], feature.shape[1], T - feature.shape[2]
|
||
).to(device, dtype=dtype),
|
||
],
|
||
2,
|
||
)
|
||
|
||
chat_rounds = [cut.custom["round"] for cut in batch["supervisions"]["cut"]]
|
||
|
||
# messages = [
|
||
# [
|
||
# {"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}请转写音频为文字"},
|
||
# {"role": "assistant", "content": ""},
|
||
# ]
|
||
# ] * len(feature)
|
||
questions_with_history = [cut.custom["question"] for cut in batch["supervisions"]["cut"]]
|
||
history_contexts = [question.rsplit('<USER>:', 1)[0].strip() for question in questions_with_history]
|
||
last_questions = [question.split('<USER>: ')[-1].strip() for question in questions_with_history]
|
||
messages = []
|
||
for i, total_round in enumerate(chat_rounds):
|
||
message = []
|
||
if total_round > 1:
|
||
history_question_answer = history_contexts[i].split('USER:')
|
||
history_question_answer = [item for item in history_question_answer if item]
|
||
for j in range(total_round - 1):
|
||
# USER: 生成一个关于夏天的诗歌。 ASSISTANT: 夏日炎炎,万物生长,阳光明媚,享受着夏日的美好时光。 USER: 给我列举一些新闻头条。 ASSISTANT: 当今社会的新闻永远不会停。
|
||
question_answer = history_question_answer[j].split('ASSISTANT:')
|
||
message += [
|
||
{"role": "user", "content": question_answer[0].strip()},
|
||
{"role": "assistant", "content": question_answer[1].strip()}
|
||
]
|
||
message += [
|
||
{"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"},
|
||
# {"role": "user", "content": f"{last_questions[i]}"},
|
||
{"role": "assistant", "content": ""}
|
||
]
|
||
print(f"message: {message}, batch_size {len(chat_rounds)}")
|
||
messages.append(message)
|
||
|
||
input_ids, attention_mask = preprocess(messages, tokenizer)
|
||
if params.enable_speech_output:
|
||
generated_ids, generated_speech_output = model.decode_with_speech_output(
|
||
feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||
)
|
||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||
for cut_id in cut_ids:
|
||
speech_token_file_name = (
|
||
params.log_dir / f"{cut_id}.txt"
|
||
)
|
||
with open(speech_token_file_name, 'w') as f:
|
||
# save_path = params.exp_dir / f"speech_output/{cut_id}.wav"
|
||
#torchaudio.save(save_path, speech_output.cpu(), 16000)
|
||
print(f"speech_output: {generated_speech_output}, cut_id: {cut_id}")
|
||
save_str = " ".join([str(i) for i in generated_speech_output])
|
||
f.write(f"{cut_id}|{save_str}\n")
|
||
|
||
else:
|
||
generated_ids = model.decode(
|
||
feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||
)
|
||
hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
|
||
print(f"hyps: {hyps}")
|
||
return {"beam-search": hyps}
|
||
|
||
|
||
def decode_dataset(
|
||
dl: torch.utils.data.DataLoader,
|
||
params: AttributeDict,
|
||
model: nn.Module,
|
||
tokenizer: AutoTokenizer,
|
||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||
"""Decode dataset.
|
||
|
||
Args:
|
||
dl:
|
||
The dataloader.
|
||
params:
|
||
It is returned by :func:`get_params`.
|
||
model:
|
||
The neural model.
|
||
Returns:
|
||
Return a dict, whose key may be "beam-search".
|
||
"""
|
||
|
||
def normalize_text_alimeeting(text: str, normalize: str = "m2met") -> str:
|
||
"""
|
||
Text normalization similar to M2MeT challenge baseline.
|
||
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||
"""
|
||
if normalize == "none":
|
||
return text
|
||
elif normalize == "m2met":
|
||
import re
|
||
|
||
text = text.replace(" ", "")
|
||
text = text.replace("<sil>", "")
|
||
text = text.replace("<%>", "")
|
||
text = text.replace("<->", "")
|
||
text = text.replace("<$>", "")
|
||
text = text.replace("<#>", "")
|
||
text = text.replace("<_>", "")
|
||
text = text.replace("<space>", "")
|
||
text = text.replace("`", "")
|
||
text = text.replace("&", "")
|
||
text = text.replace(",", "")
|
||
if re.search("[a-zA-Z]", text):
|
||
text = text.upper()
|
||
text = text.replace("A", "A")
|
||
text = text.replace("a", "A")
|
||
text = text.replace("b", "B")
|
||
text = text.replace("c", "C")
|
||
text = text.replace("k", "K")
|
||
text = text.replace("t", "T")
|
||
text = text.replace(",", "")
|
||
text = text.replace("丶", "")
|
||
text = text.replace("。", "")
|
||
text = text.replace("、", "")
|
||
text = text.replace("?", "")
|
||
return text
|
||
|
||
results = []
|
||
|
||
num_cuts = 0
|
||
|
||
try:
|
||
num_batches = len(dl)
|
||
except TypeError:
|
||
num_batches = "?"
|
||
|
||
results = defaultdict(list)
|
||
for batch_idx, batch in enumerate(dl):
|
||
answers = batch["supervisions"]["text"]
|
||
questions_with_history = [cut.custom["question"] for cut in batch["supervisions"]["cut"]]
|
||
answer_cosyvoice_speech_token = [cut.custom["answer_cosyvoice_speech_token"] for cut in batch["supervisions"]["cut"]]
|
||
texts = [question.split('<USER>: ')[-1].strip() for question in questions_with_history]
|
||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||
|
||
hyps_dict = decode_one_batch(
|
||
params=params,
|
||
model=model,
|
||
batch=batch,
|
||
tokenizer=tokenizer,
|
||
)
|
||
|
||
for lm_scale, hyps in hyps_dict.items():
|
||
this_batch = []
|
||
assert len(hyps) == len(texts)
|
||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||
# ref_text = normalize_text_alimeeting(ref_text)
|
||
ref_words = ref_text.split()
|
||
print(f"ref: {ref_text}")
|
||
print(f"hyp: {''.join(hyp_words)}")
|
||
this_batch.append((cut_id, ref_words, hyp_words))
|
||
|
||
results[lm_scale].extend(this_batch)
|
||
|
||
num_cuts += len(batch["supervisions"]["text"])
|
||
|
||
if batch_idx % 100 == 0:
|
||
batch_str = f"{batch_idx}/{num_batches}"
|
||
|
||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||
return results
|
||
|
||
|
||
def save_results(
|
||
params: AttributeDict,
|
||
test_set_name: str,
|
||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||
):
|
||
|
||
enable_log = True
|
||
test_set_wers = dict()
|
||
for key, results in results_dict.items():
|
||
recog_path = (
|
||
params.log_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||
)
|
||
results = sorted(results)
|
||
store_transcripts(filename=recog_path, texts=results)
|
||
if enable_log:
|
||
logging.info(f"The transcripts are stored in {recog_path}")
|
||
|
||
# The following prints out WERs, per-word error statistics and aligned
|
||
# ref/hyp pairs.
|
||
errs_filename = (
|
||
params.log_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||
)
|
||
# we compute CER for aishell dataset.
|
||
results_char = []
|
||
for res in results:
|
||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||
with open(errs_filename, "w") as f:
|
||
wer = write_error_stats(
|
||
f, f"{test_set_name}-{key}", results_char, enable_log=enable_log
|
||
)
|
||
test_set_wers[key] = wer
|
||
|
||
if enable_log:
|
||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||
|
||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||
errs_info = params.log_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt"
|
||
with open(errs_info, "w") as f:
|
||
print("settings\tCER", file=f)
|
||
for key, val in test_set_wers:
|
||
print("{}\t{}".format(key, val), file=f)
|
||
|
||
s = "\nFor {}, CER of different settings are:\n".format(test_set_name)
|
||
note = "\tbest for {}".format(test_set_name)
|
||
for key, val in test_set_wers:
|
||
s += "{}\t{}{}\n".format(key, val, note)
|
||
note = ""
|
||
logging.info(s)
|
||
|
||
|
||
@torch.no_grad()
|
||
def main():
|
||
parser = get_parser()
|
||
AsrDataModule.add_arguments(parser)
|
||
args = parser.parse_args()
|
||
args.exp_dir = Path(args.exp_dir)
|
||
|
||
params = get_params()
|
||
params.update(vars(args))
|
||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||
params.log_dir = Path(params.exp_dir) / f"log-{params.method}"
|
||
params.log_dir.mkdir(parents=True, exist_ok=True)
|
||
setup_logger(
|
||
f"{params.exp_dir}/log-{params.method}/log-decode-{params.suffix}"
|
||
)
|
||
|
||
logging.info("Decoding started")
|
||
logging.info(params)
|
||
|
||
device = torch.device("cpu")
|
||
if torch.cuda.is_available():
|
||
device = torch.device("cuda")
|
||
|
||
logging.info(f"device: {device}")
|
||
|
||
if params.remove_whisper_encoder_input_length_restriction:
|
||
replace_whisper_encoder_forward()
|
||
|
||
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||
speech_encoder = whisper_model.encoder
|
||
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||
|
||
if params.use_flash_attn:
|
||
attn_implementation = "flash_attention_2"
|
||
# torch_dtype=torch.bfloat16 FIX ME
|
||
torch_dtype = torch.float16
|
||
tokenizer.padding_side = "left"
|
||
|
||
else:
|
||
attn_implementation = "eager"
|
||
torch_dtype = torch.float16
|
||
tokenizer.padding_side = "right"
|
||
|
||
llm = AutoModelForCausalLM.from_pretrained(
|
||
params.llm_path_or_name,
|
||
attn_implementation=attn_implementation,
|
||
torch_dtype=torch_dtype,
|
||
)
|
||
if params.use_lora:
|
||
lora_config = LoraConfig(
|
||
r=64,
|
||
lora_alpha=16,
|
||
target_modules=[
|
||
"q_proj",
|
||
"k_proj",
|
||
"v_proj",
|
||
"o_proj",
|
||
"up_proj",
|
||
"gate_proj",
|
||
"down_proj",
|
||
],
|
||
task_type="CAUSAL_LM",
|
||
)
|
||
llm = get_peft_model(llm, lora_config)
|
||
llm.print_trainable_parameters()
|
||
|
||
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||
tokenizer.add_special_tokens(special_tokens_dict)
|
||
llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
||
llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
||
llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
||
|
||
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||
DEFAULT_SPEECH_TOKEN
|
||
)
|
||
|
||
encoder_projector = EncoderProjector(
|
||
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||
)
|
||
|
||
if params.enable_speech_output:
|
||
# Determine attn_implementation and torch_dtype based on use_flash_attn
|
||
if params.use_flash_attn:
|
||
attn_implementation = "flash_attention_2"
|
||
torch_dtype = torch.float16 # Or torch.bfloat16 if needed/supported
|
||
else:
|
||
attn_implementation = "eager"
|
||
torch_dtype = torch.float16
|
||
|
||
# codec_lm = AutoModelForCausalLM.from_pretrained(
|
||
# params.llm_path_or_name,
|
||
# attn_implementation=attn_implementation,
|
||
# torch_dtype=torch_dtype,
|
||
# )
|
||
codec_vocab_size = 8192
|
||
config = Qwen2Config(
|
||
vocab_size=codec_vocab_size,
|
||
hidden_size=1024,
|
||
num_hidden_layers=12,
|
||
num_attention_heads=16,
|
||
num_key_value_heads=16,
|
||
intermediate_size=2048,
|
||
max_position_embeddings=4096,
|
||
)
|
||
# codec_lm = Qwen2ForCausalLM(config=config)
|
||
# Pass attn_implementation and torch_dtype to the constructor
|
||
# Use AutoModelForCausalLM.from_config for more generality
|
||
codec_lm = AutoModelForCausalLM.from_config(
|
||
config=config,
|
||
attn_implementation=attn_implementation,
|
||
torch_dtype=torch_dtype
|
||
)
|
||
# cosyvoice2_token_size = 6561
|
||
codec_lm.resize_token_embeddings(codec_vocab_size)
|
||
codec_lm.vocab_size = codec_vocab_size
|
||
codec_lm.config.pad_token_id = codec_vocab_size - 1
|
||
codec_lm.config.eos_token_id = codec_vocab_size - 2
|
||
codec_lm.config.bos_token_id = codec_vocab_size - 3
|
||
if params.use_lora:
|
||
lora_config = LoraConfig(
|
||
r=64,
|
||
lora_alpha=16,
|
||
target_modules=[
|
||
"q_proj",
|
||
"k_proj",
|
||
"v_proj",
|
||
"o_proj",
|
||
"up_proj",
|
||
"gate_proj",
|
||
"down_proj",
|
||
],
|
||
lora_dropout=0.05,
|
||
task_type="CAUSAL_LM",
|
||
)
|
||
codec_lm = get_peft_model(codec_lm, lora_config)
|
||
codec_lm.print_trainable_parameters()
|
||
else:
|
||
codec_lm = None
|
||
|
||
model = SPEECH_LLM(
|
||
speech_encoder,
|
||
llm,
|
||
encoder_projector,
|
||
codec_lm,
|
||
codec_lm_padding_side= "left" if params.use_flash_attn else "right",
|
||
)
|
||
|
||
if params.avg > 1:
|
||
start = params.epoch - params.avg + 1
|
||
assert start >= 1, start
|
||
checkpoint = torch.load(
|
||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||
)
|
||
assert "model" not in checkpoint
|
||
# deepspeed converted checkpoint only contains model state_dict
|
||
filenames = [
|
||
f"{params.exp_dir}/epoch-{epoch}.pt"
|
||
for epoch in range(start, params.epoch + 1)
|
||
]
|
||
avg_checkpoint = average_checkpoints(filenames)
|
||
model.load_state_dict(avg_checkpoint, strict=False)
|
||
|
||
filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt"
|
||
torch.save(avg_checkpoint, filename)
|
||
else:
|
||
checkpoint = torch.load(
|
||
f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu"
|
||
)
|
||
model.load_state_dict(checkpoint, strict=False)
|
||
|
||
model.to(device)
|
||
model.eval()
|
||
num_param = sum([p.numel() for p in model.parameters()])
|
||
logging.info(f"Number of model parameters: {num_param}")
|
||
|
||
# we need cut ids to display recognition results.
|
||
args.return_cuts = True
|
||
|
||
data_module = AsrDataModule(args)
|
||
# data_module = MultiDataset(args.manifest_dir)
|
||
|
||
def remove_long_utt(c: Cut):
|
||
# Keep only utterances with duration in 30 seconds
|
||
#
|
||
if c.duration > 30.0:
|
||
logging.warning(
|
||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
||
)
|
||
return False
|
||
return True
|
||
|
||
# if params.dataset == "aishell":
|
||
# test_sets_cuts = data_module.aishell_test_cuts()
|
||
# elif params.dataset == "speechio":
|
||
# test_sets_cuts = data_module.speechio_test_cuts()
|
||
# elif params.dataset == "wenetspeech_test_meeting":
|
||
# test_sets_cuts = data_module.wenetspeech_test_meeting_cuts()
|
||
# else:
|
||
test_sets_cuts = data_module.test_cuts()
|
||
|
||
test_sets = test_sets_cuts.keys()
|
||
test_dls = [
|
||
data_module.test_dataloaders(test_sets_cuts[cuts_name].filter(remove_long_utt))
|
||
for cuts_name in test_sets
|
||
]
|
||
|
||
for test_set, test_dl in zip(test_sets, test_dls):
|
||
results_dict = decode_dataset(
|
||
dl=test_dl,
|
||
params=params,
|
||
model=model,
|
||
tokenizer=tokenizer,
|
||
)
|
||
|
||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||
|
||
logging.info("Done!")
|
||
|
||
|
||
torch.set_num_threads(1)
|
||
torch.set_num_interop_threads(1)
|
||
|
||
if __name__ == "__main__":
|
||
main()
|