mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
202 lines
5.7 KiB
Python
Executable File
202 lines
5.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from cls_datamodule import ImageNetClsDataModule
|
|
from train import add_model_arguments, get_params, get_model
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
from utils import AverageMeter, accuracy
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=30,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def validate(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
) -> None:
|
|
"""Run the validation process."""
|
|
batch_time = AverageMeter()
|
|
acc1_meter = AverageMeter()
|
|
acc5_meter = AverageMeter()
|
|
|
|
end = time.time()
|
|
for batch_idx, (images, targets) in enumerate(valid_dl):
|
|
images = images.cuda(non_blocking=True)
|
|
targets = targets.cuda(non_blocking=True)
|
|
|
|
# compute outputs
|
|
outputs = model(images)
|
|
|
|
# measure accuracy and record loss
|
|
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
|
|
|
|
acc1_meter.update(acc1.item(), targets.size(0))
|
|
acc5_meter.update(acc5.item(), targets.size(0))
|
|
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
|
|
logging.info(f" * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}")
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
ImageNetClsDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.exp_dir}/log-decode-{params.suffix}")
|
|
logging.info("Validation started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# Create datasets and dataloaders
|
|
imagenet = ImageNetClsDataModule(params)
|
|
valid_dl = imagenet.build_val_loader()
|
|
|
|
validate(
|
|
params=params,
|
|
model=model,
|
|
valid_dl=valid_dl,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|