2023-08-14 14:51:49 +08:00

202 lines
5.7 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import time
from pathlib import Path
import torch
import torch.nn as nn
from cls_datamodule import ImageNetClsDataModule
from train import add_model_arguments, get_params, get_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
str2bool,
)
from utils import AverageMeter, accuracy
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
add_model_arguments(parser)
return parser
def validate(
params: AttributeDict,
model: nn.Module,
valid_dl: torch.utils.data.DataLoader,
) -> None:
"""Run the validation process."""
batch_time = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for batch_idx, (images, targets) in enumerate(valid_dl):
images = images.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
# compute outputs
outputs = model(images)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
acc1_meter.update(acc1.item(), targets.size(0))
acc5_meter.update(acc5.item(), targets.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logging.info(f" * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}")
@torch.no_grad()
def main():
parser = get_parser()
ImageNetClsDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.exp_dir}/log-decode-{params.suffix}")
logging.info("Validation started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
logging.info(params)
logging.info("About to create model")
model = get_model(params)
if not params.use_averaged_model:
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# Create datasets and dataloaders
imagenet = ImageNetClsDataModule(params)
valid_dl = imagenet.build_val_loader()
validate(
params=params,
model=model,
valid_dl=valid_dl,
)
logging.info("Done!")
if __name__ == "__main__":
main()