79 lines
2.3 KiB
Python

#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import torch
import torch.distributed as dist
# We might need to move this file to icefall/utils.py in the future
# Copied from https://github.com/microsoft/Swin-Transformer/blob/main/utils.py
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def fix_random_seed(random_seed: int, rank: int):
seed = random_seed + rank
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Copied from https://github.com/huggingface/pytorch-image-models/blob/main/timm/utils/metrics.py
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self) -> str:
return f"{self.val:.4f} (avg: {self.avg:.4f})"
# Copied from https://github.com/huggingface/pytorch-image-models/blob/main/timm/utils/metrics.py
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
maxk = min(max(topk), output.size()[1])
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
return [
correct[: min(k, maxk)].reshape(-1).float().sum(0) * 100.0 / batch_size
for k in topk
]