icefall/egs/ami/SURT/local/compute_fbank_aimix.py
Desh Raj 41b16d7838
SURT recipe for AMI and ICSI (#1133)
* merge upstream

* add SURT model and training

* add libricss decoding

* add chunk width randomization

* decode SURT with libricss

* initial commit for zipformer_ctc

* remove unwanted changes

* remove changes to other recipe

* fix zipformer softlink

* fix for JIT export

* add missing file

* fix symbolic links

* update results

* clean commit for SURT recipe

* training libricss surt model

* remove unwanted files

* remove unwanted changes

* remove changes in librispeech

* change some files to symlinks

* remove unwanted changes in utils

* add export script

* add README

* minor fix in README

* add assets for README

* replace some files with symlinks

* remove unused decoding methods

* initial commit for SURT AMI recipe

* fix symlink

* add train + decode scripts

* add missing symlink

* change files to symlink

* change file type
2023-07-08 23:01:51 +08:00

186 lines
6.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the synthetically mixed AMI and ICSI
train set.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import logging
import random
import warnings
from pathlib import Path
import torch
import torch.multiprocessing
import torchaudio
from lhotse import (
AudioSource,
LilcomChunkyWriter,
Recording,
load_manifest,
load_manifest_lazy,
)
from lhotse.audio import set_ffmpeg_torchaudio_info_enabled
from lhotse.cut import MixedCut, MixTrack, MultiCut
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.utils import fix_random_seed, uuid4
from tqdm import tqdm
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
torchaudio.set_audio_backend("soundfile")
set_ffmpeg_torchaudio_info_enabled(False)
def compute_fbank_aimix():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
sampling_rate = 16000
num_mel_bins = 80
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
logging.info("Reading manifests")
train_cuts = load_manifest_lazy(src_dir / "ai-mix_cuts_clean_full.jsonl.gz")
# only uses RIRs and noises from REVERB challenge
real_rirs = load_manifest(src_dir / "real-rir_recordings_all.jsonl.gz").filter(
lambda r: "RVB2014" in r.id
)
noises = load_manifest(src_dir / "iso-noise_recordings_all.jsonl.gz").filter(
lambda r: "RVB2014" in r.id
)
# Apply perturbation to the training cuts
logging.info("Applying perturbation to the training cuts")
train_cuts_rvb = train_cuts.map(
lambda c: augment(
c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True
)
)
logging.info("Extracting fbank features for training cuts")
_ = train_cuts.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / "ai-mix_feats_clean",
manifest_path=src_dir / "cuts_train_clean.jsonl.gz",
batch_duration=5000,
num_workers=4,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
_ = train_cuts_rvb.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / "ai-mix_feats_reverb",
manifest_path=src_dir / "cuts_train_reverb.jsonl.gz",
batch_duration=5000,
num_workers=4,
storage_type=LilcomChunkyWriter,
overwrite=True,
)
def augment(cut, perturb_snr=False, rirs=None, noises=None, perturb_loudness=False):
"""
Given a mixed cut, this function optionally applies the following augmentations:
- Perturbing the SNRs of the tracks (in range [-5, 5] dB)
- Reverberation using a randomly selected RIR
- Adding noise
- Perturbing the loudness (in range [-20, -25] dB)
"""
out_cut = cut.drop_features()
# Perturb the SNRs (optional)
if perturb_snr:
snrs = [random.uniform(-5, 5) for _ in range(len(cut.tracks))]
for i, (track, snr) in enumerate(zip(out_cut.tracks, snrs)):
if i == 0:
# Skip the first track since it is the reference
continue
track.snr = snr
# Reverberate the cut (optional)
if rirs is not None:
# Select an RIR at random
rir = random.choice(rirs)
# Select a channel at random
rir_channel = random.choice(list(range(rir.num_channels)))
# Reverberate the cut
out_cut = out_cut.reverb_rir(rir_recording=rir, rir_channels=[rir_channel])
# Add noise (optional)
if noises is not None:
# Select a noise recording at random
noise = random.choice(noises).to_cut()
if isinstance(noise, MultiCut):
noise = noise.to_mono()[0]
# Select an SNR at random
snr = random.uniform(10, 30)
# Repeat the noise to match the duration of the cut
noise = repeat_cut(noise, out_cut.duration)
out_cut = MixedCut(
id=out_cut.id,
tracks=[
MixTrack(cut=out_cut, type="MixedCut"),
MixTrack(cut=noise, type="DataCut", snr=snr),
],
)
# Perturb the loudness (optional)
if perturb_loudness:
target_loudness = random.uniform(-20, -25)
out_cut = out_cut.normalize_loudness(target_loudness, mix_first=True)
return out_cut
def repeat_cut(cut, duration):
while cut.duration < duration:
cut = cut.mix(cut, offset_other_by=cut.duration)
return cut.truncate(duration=duration)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
fix_random_seed(42)
compute_fbank_aimix()