icefall/egs/alimeeting/ASR_v2/local/compute_fbank_alimeeting.py
zr_jin 74806b744b
disable speed perturbation by default (#1176)
* disable speed perturbation by default

* minor fixes

* minor updates

* updated bash scripts to incorporate with the `speed-perturb` arg

* minor fixes

1. changed the naming scheme from `speed-perturb` to `perturb-speed` to align with the librispeech recipe

>> 00256a7669/egs/librispeech/ASR/local/compute_fbank_librispeech.py (L65)

2. changed arg type for `perturb-speed` to str2bool
2023-08-10 20:56:02 +08:00

218 lines
7.1 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file computes fbank features of the AliMeeting dataset.
For the training data, we prepare IHM, reverberated IHM, SDM, and GSS-enhanced
audios. For the test data, we separately prepare IHM, SDM, and GSS-enhanced
parts (which are the 3 evaluation settings).
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
from pathlib import Path
import torch
import torch.multiprocessing
from lhotse import CutSet, LilcomChunkyWriter
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
def compute_fbank_ami(perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
sampling_rate = 16000
num_mel_bins = 80
extractor = KaldifeatFbank(
KaldifeatFbankConfig(
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
device="cuda",
)
)
logging.info("Reading manifests")
manifests_ihm = read_manifests_if_cached(
dataset_parts=["train", "eval", "test"],
output_dir=src_dir,
prefix="alimeeting-ihm",
suffix="jsonl.gz",
)
manifests_sdm = read_manifests_if_cached(
dataset_parts=["train", "eval", "test"],
output_dir=src_dir,
prefix="alimeeting-sdm",
suffix="jsonl.gz",
)
# For GSS we already have cuts so we read them directly.
manifests_gss = read_manifests_if_cached(
dataset_parts=["train", "eval", "test"],
output_dir=src_dir,
prefix="alimeeting-gss",
suffix="jsonl.gz",
)
def _extract_feats(
cuts: CutSet, storage_path: Path, manifest_path: Path, speed_perturb: bool
) -> None:
if speed_perturb:
logging.info(f"Doing speed perturb")
cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1)
_ = cuts.compute_and_store_features_batch(
extractor=extractor,
storage_path=storage_path,
manifest_path=manifest_path,
batch_duration=5000,
num_workers=8,
storage_type=LilcomChunkyWriter,
)
logging.info(
"Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)"
)
logging.info("Processing train split IHM")
cuts_ihm = (
CutSet.from_manifests(**manifests_ihm["train"])
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
.modify_ids(lambda x: x + "-ihm")
)
_extract_feats(
cuts_ihm,
output_dir / "feats_train_ihm",
src_dir / "cuts_train_ihm.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split IHM + reverberated IHM")
cuts_ihm_rvb = cuts_ihm.reverb_rir()
_extract_feats(
cuts_ihm_rvb,
output_dir / "feats_train_ihm_rvb",
src_dir / "cuts_train_ihm_rvb.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split SDM")
cuts_sdm = (
CutSet.from_manifests(**manifests_sdm["train"])
.trim_to_supervisions(keep_overlapping=False)
.modify_ids(lambda x: x + "-sdm")
)
_extract_feats(
cuts_sdm,
output_dir / "feats_train_sdm",
src_dir / "cuts_train_sdm.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split GSS")
cuts_gss = (
CutSet.from_manifests(**manifests_gss["train"])
.trim_to_supervisions(keep_overlapping=False)
.modify_ids(lambda x: x + "-gss")
)
_extract_feats(
cuts_gss,
output_dir / "feats_train_gss",
src_dir / "cuts_train_gss.jsonl.gz",
perturb_speed,
)
logging.info("Preparing test cuts: IHM, SDM, GSS (optional)")
for split in ["eval", "test"]:
logging.info(f"Processing {split} IHM")
cuts_ihm = (
CutSet.from_manifests(**manifests_ihm[split])
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{split}_ihm",
manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
)
logging.info(f"Processing {split} SDM")
cuts_sdm = (
CutSet.from_manifests(**manifests_sdm[split])
.trim_to_supervisions(keep_overlapping=False)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{split}_sdm",
manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
)
logging.info(f"Processing {split} GSS")
cuts_gss = (
CutSet.from_manifests(**manifests_gss[split])
.trim_to_supervisions(keep_overlapping=False)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{split}_gss",
manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_ami(perturb_speed=args.perturb_speed)