mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-14 12:32:20 +00:00
222 lines
10 KiB
Python
222 lines
10 KiB
Python
|
|
# This file is copied & modified from pytorch/torch/nn/modules/sparse.py
|
|
# It modifies nn.Embedding
|
|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
from torch.nn import Parameter
|
|
|
|
|
|
class Embedding(nn.Module):
|
|
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
|
|
|
|
This module is often used to store word embeddings and retrieve them using indices.
|
|
The input to the module is a list of indices, and the output is the corresponding
|
|
word embeddings.
|
|
|
|
Args:
|
|
num_embeddings (int): size of the dictionary of embeddings
|
|
embedding_dim (int): the size of each embedding vector
|
|
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
|
|
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
|
|
i.e. it remains as a fixed "pad". For a newly constructed Embedding,
|
|
the embedding vector at :attr:`padding_idx` will default to all zeros,
|
|
but can be updated to another value to be used as the padding vector.
|
|
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
|
is renormalized to have norm :attr:`max_norm`.
|
|
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
|
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
|
|
the words in the mini-batch. Default ``False``.
|
|
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
|
See Notes for more details regarding sparse gradients.
|
|
|
|
Attributes:
|
|
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
|
initialized from :math:`\mathcal{N}(0, 1)`
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
|
|
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
|
|
|
.. note::
|
|
Keep in mind that only a limited number of optimizers support
|
|
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
|
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
|
|
|
.. note::
|
|
When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
|
|
:attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
|
|
modified in-place, performing a differentiable operation on ``Embedding.weight`` before
|
|
calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
|
|
:attr:`max_norm` is not ``None``. For example::
|
|
|
|
n, d, m = 3, 5, 7
|
|
embedding = nn.Embedding(n, d, max_norm=True)
|
|
W = torch.randn((m, d), requires_grad=True)
|
|
idx = torch.tensor([1, 2])
|
|
a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable
|
|
b = embedding(idx) @ W.t() # modifies weight in-place
|
|
out = (a.unsqueeze(0) + b.unsqueeze(1))
|
|
loss = out.sigmoid().prod()
|
|
loss.backward()
|
|
|
|
Examples::
|
|
|
|
>>> # an Embedding module containing 10 tensors of size 3
|
|
>>> embedding = nn.Embedding(10, 3)
|
|
>>> # a batch of 2 samples of 4 indices each
|
|
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
|
|
>>> embedding(input)
|
|
tensor([[[-0.0251, -1.6902, 0.7172],
|
|
[-0.6431, 0.0748, 0.6969],
|
|
[ 1.4970, 1.3448, -0.9685],
|
|
[-0.3677, -2.7265, -0.1685]],
|
|
|
|
[[ 1.4970, 1.3448, -0.9685],
|
|
[ 0.4362, -0.4004, 0.9400],
|
|
[-0.6431, 0.0748, 0.6969],
|
|
[ 0.9124, -2.3616, 1.1151]]])
|
|
|
|
|
|
>>> # example with padding_idx
|
|
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
|
>>> input = torch.LongTensor([[0,2,0,5]])
|
|
>>> embedding(input)
|
|
tensor([[[ 0.0000, 0.0000, 0.0000],
|
|
[ 0.1535, -2.0309, 0.9315],
|
|
[ 0.0000, 0.0000, 0.0000],
|
|
[-0.1655, 0.9897, 0.0635]]])
|
|
|
|
>>> # example of changing `pad` vector
|
|
>>> padding_idx = 0
|
|
>>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
|
|
>>> embedding.weight
|
|
Parameter containing:
|
|
tensor([[ 0.0000, 0.0000, 0.0000],
|
|
[-0.7895, -0.7089, -0.0364],
|
|
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
|
|
>>> with torch.no_grad():
|
|
... embedding.weight[padding_idx] = torch.ones(3)
|
|
>>> embedding.weight
|
|
Parameter containing:
|
|
tensor([[ 1.0000, 1.0000, 1.0000],
|
|
[-0.7895, -0.7089, -0.0364],
|
|
[ 0.6778, 0.5803, 0.2678]], requires_grad=True)
|
|
"""
|
|
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
|
|
'norm_type', 'scale_grad_by_freq', 'sparse']
|
|
|
|
num_embeddings: int
|
|
embedding_dim: int
|
|
padding_idx: Optional[int]
|
|
max_norm: Optional[float]
|
|
norm_type: float
|
|
scale_grad_by_freq: bool
|
|
weight: Tensor
|
|
sparse: bool
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
|
|
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
|
|
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
|
|
super(Embedding, self).__init__()
|
|
self.num_embeddings = num_embeddings
|
|
self.embedding_dim = embedding_dim
|
|
if padding_idx is not None:
|
|
if padding_idx > 0:
|
|
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
|
elif padding_idx < 0:
|
|
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
|
padding_idx = self.num_embeddings + padding_idx
|
|
self.padding_idx = padding_idx
|
|
self.max_norm = max_norm
|
|
self.norm_type = norm_type
|
|
self.scale_grad_by_freq = scale_grad_by_freq
|
|
self.embedding_scale = math.sqrt(self.embedding_dim)
|
|
if _weight is None:
|
|
self.weight = Parameter(torch.empty(num_embeddings, embedding_dim))
|
|
self.reset_parameters()
|
|
else:
|
|
assert list(_weight.shape) == [num_embeddings, embedding_dim], \
|
|
'Shape of weight does not match num_embeddings and embedding_dim'
|
|
self.weight = Parameter(_weight)
|
|
|
|
self.sparse = sparse
|
|
|
|
def reset_parameters(self) -> None:
|
|
std = 1 / self.embedding_scale
|
|
nn.init.normal_(self.weight, std=std)
|
|
self._fill_padding_idx_with_zero()
|
|
|
|
def _fill_padding_idx_with_zero(self) -> None:
|
|
if self.padding_idx is not None:
|
|
with torch.no_grad():
|
|
self.weight[self.padding_idx].fill_(0)
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.embedding(
|
|
input, self.weight, self.padding_idx, self.max_norm,
|
|
self.norm_type, self.scale_grad_by_freq, self.sparse) * self.embedding_scale
|
|
|
|
def extra_repr(self) -> str:
|
|
s = '{num_embeddings}, {embedding_dim}'
|
|
if self.padding_idx is not None:
|
|
s += ', padding_idx={padding_idx}'
|
|
if self.max_norm is not None:
|
|
s += ', max_norm={max_norm}'
|
|
if self.norm_type != 2:
|
|
s += ', norm_type={norm_type}'
|
|
if self.scale_grad_by_freq is not False:
|
|
s += ', scale_grad_by_freq={scale_grad_by_freq}'
|
|
if self.sparse is not False:
|
|
s += ', sparse=True'
|
|
return s.format(**self.__dict__)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, embeddings, freeze=True, padding_idx=None,
|
|
max_norm=None, norm_type=2., scale_grad_by_freq=False,
|
|
sparse=False):
|
|
r"""Creates Embedding instance from given 2-dimensional FloatTensor.
|
|
|
|
Args:
|
|
embeddings (Tensor): FloatTensor containing weights for the Embedding.
|
|
First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
|
|
freeze (boolean, optional): If ``True``, the tensor does not get updated in the learning process.
|
|
Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
|
|
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
|
|
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
|
|
i.e. it remains as a fixed "pad".
|
|
max_norm (float, optional): See module initialization documentation.
|
|
norm_type (float, optional): See module initialization documentation. Default ``2``.
|
|
scale_grad_by_freq (boolean, optional): See module initialization documentation. Default ``False``.
|
|
sparse (bool, optional): See module initialization documentation.
|
|
|
|
Examples::
|
|
|
|
>>> # FloatTensor containing pretrained weights
|
|
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
|
|
>>> embedding = nn.Embedding.from_pretrained(weight)
|
|
>>> # Get embeddings for index 1
|
|
>>> input = torch.LongTensor([1])
|
|
>>> embedding(input)
|
|
tensor([[ 4.0000, 5.1000, 6.3000]])
|
|
"""
|
|
assert embeddings.dim() == 2, \
|
|
'Embeddings parameter is expected to be 2-dimensional'
|
|
rows, cols = embeddings.shape
|
|
embedding = cls(
|
|
num_embeddings=rows,
|
|
embedding_dim=cols,
|
|
_weight=embeddings,
|
|
padding_idx=padding_idx,
|
|
max_norm=max_norm,
|
|
norm_type=norm_type,
|
|
scale_grad_by_freq=scale_grad_by_freq,
|
|
sparse=sparse)
|
|
embedding.weight.requires_grad = not freeze
|
|
return embedding
|
|
|