marcoyang1998 16a2748d6c
PromptASR for contextualized ASR with controllable style (#1250)
* Add PromptASR with BERT as text encoder

* Support using word-list based content prompts for context biasing

* Upload the pretrained models to huggingface

* Add usage example
2023-10-11 14:56:41 +08:00

440 lines
14 KiB
Python

import argparse
import ast
import glob
import logging
import os
from collections import defaultdict
from typing import Dict, Iterable, List, TextIO, Tuple, Union
import kaldialign
from lhotse import load_manifest, load_manifest_lazy
from lhotse.cut import Cut, CutSet
from text_normalization import remove_non_alphabetic
from tqdm import tqdm
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--manifest-dir",
type=str,
default="data/fbank",
help="Where are the manifest stored",
)
parser.add_argument(
"--subset", type=str, default="medium", help="Which subset to work with"
)
parser.add_argument(
"--top-k",
type=int,
default=10000,
help="How many words to keep",
)
return parser
def get_facebook_biasing_list(
test_set: str,
num_distractors: int = 100,
) -> Dict:
# Get the biasing list from the meta paper: https://arxiv.org/pdf/2104.02194.pdf
assert num_distractors in (0, 100, 500, 1000, 2000), num_distractors
if num_distractors == 0:
if test_set == "test-clean":
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_100.tsv"
elif test_set == "test-other":
biasing_file = "data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_100.tsv"
else:
raise ValueError(f"Unseen test set {test_set}")
else:
if test_set == "test-clean":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
elif test_set == "test-other":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv"
else:
raise ValueError(f"Unseen test set {test_set}")
f = open(biasing_file, "r")
data = f.readlines()
f.close()
output = dict()
for line in data:
id, _, l1, l2 = line.split("\t")
if num_distractors > 0: # use distractors
biasing_list = ast.literal_eval(l2)
else:
biasing_list = ast.literal_eval(l1)
biasing_list = [w.strip().upper() for w in biasing_list]
output[id] = " ".join(biasing_list)
return output
def brian_biasing_list(level: str):
# The biasing list from Brian's paper: https://arxiv.org/pdf/2109.00627.pdf
root_dir = f"data/context_biasing/LibriSpeechBiasingLists/{level}Level"
all_files = glob.glob(root_dir + "/*")
biasing_dict = {}
for f in all_files:
k = f.split("/")[-1]
fin = open(f, "r")
data = fin.read().strip().split()
biasing_dict[k] = " ".join(data)
fin.close()
return biasing_dict
def get_rare_words(
subset: str = "medium",
top_k: int = 10000,
# min_count: int = 10000,
):
"""Get a list of rare words appearing less than `min_count` times
Args:
subset: The dataset
top_k (int): How many frequent words
"""
txt_path = f"data/tmp/transcript_words_{subset}.txt"
rare_word_file = f"data/context_biasing/{subset}_rare_words_topk_{top_k}.txt"
if os.path.exists(rare_word_file):
print("File exists, do not proceed!")
return
print("---Identifying rare words in the manifest---")
count_file = f"data/tmp/transcript_words_{subset}_count.txt"
if not os.path.exists(count_file):
with open(txt_path, "r") as file:
words = file.read().upper().split()
word_count = {}
for word in words:
word = remove_non_alphabetic(word, strict=False)
word = word.split()
for w in word:
if w not in word_count:
word_count[w] = 1
else:
word_count[w] += 1
word_count = list(word_count.items()) # convert to a list of tuple
word_count = sorted(word_count, key=lambda w: int(w[1]), reverse=True)
with open(count_file, "w") as fout:
for w, count in word_count:
fout.write(f"{w}\t{count}\n")
else:
word_count = {}
with open(count_file, "r") as fin:
word_count = fin.read().strip().split("\n")
word_count = [pair.split("\t") for pair in word_count]
word_count = sorted(word_count, key=lambda w: int(w[1]), reverse=True)
print(f"A total of {len(word_count)} words appeared!")
rare_words = []
for word, count in word_count[top_k:]:
rare_words.append(word + "\n")
print(f"A total of {len(rare_words)} are identified as rare words.")
with open(rare_word_file, "w") as f:
f.writelines(rare_words)
def add_context_list_to_manifest(
manifest_dir: str,
subset: str = "medium",
top_k: int = 10000,
):
"""Generate a context list of rare words for each utterance in the manifest
Args:
manifest_dir: Where to store the manifest with context list
subset (str): Subset
top_k (int): How many frequent words
"""
orig_manifest_dir = f"{manifest_dir}/libriheavy_cuts_{subset}.jsonl.gz"
target_manifest_dir = orig_manifest_dir.replace(
".jsonl.gz", f"_with_context_list_topk_{top_k}.jsonl.gz"
)
if os.path.exists(target_manifest_dir):
print(f"Target file exits at {target_manifest_dir}!")
return
rare_words_file = f"data/context_biasing/{subset}_rare_words_topk_{top_k}.txt"
print(f"---Reading rare words from {rare_words_file}---")
with open(rare_words_file, "r") as f:
rare_words = f.read()
rare_words = rare_words.split("\n")
rare_words = set(rare_words)
print(f"A total of {len(rare_words)} rare words!")
cuts = load_manifest_lazy(orig_manifest_dir)
print(f"Loaded manifest from {orig_manifest_dir}")
def _add_context(c: Cut):
splits = (
remove_non_alphabetic(c.supervisions[0].texts[0], strict=False)
.upper()
.split()
)
found = []
for w in splits:
if w in rare_words:
found.append(w)
c.supervisions[0].context_list = " ".join(found)
return c
cuts = cuts.map(_add_context)
print(f"---Saving manifest with context list to {target_manifest_dir}---")
cuts.to_file(target_manifest_dir)
print("Finished")
def check(
manifest_dir: str,
subset: str = "medium",
top_k: int = 10000,
):
# Show how many samples in the training set have a context list
# and the average length of context list
print("--- Calculating the stats over the manifest ---")
manifest_dir = f"{manifest_dir}/libriheavy_cuts_{subset}_with_context_list_topk_{top_k}.jsonl.gz"
cuts = load_manifest_lazy(manifest_dir)
total_cuts = len(cuts)
has_context_list = [c.supervisions[0].context_list != "" for c in cuts]
context_list_len = [len(c.supervisions[0].context_list.split()) for c in cuts]
print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ")
print(
f"Average length of non-empty context list is {sum(context_list_len)/sum(has_context_list)}"
)
def write_error_stats(
f: TextIO,
test_set_name: str,
results: List[Tuple[str, str]],
enable_log: bool = True,
compute_CER: bool = False,
biasing_words: List[str] = None,
) -> float:
"""Write statistics based on predicted results and reference transcripts. It also calculates the
biasing word error rate as described in https://arxiv.org/pdf/2104.02194.pdf
It will write the following to the given file:
- WER
- number of insertions, deletions, substitutions, corrects and total
reference words. For example::
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
reference words (2337 correct)
- The difference between the reference transcript and predicted result.
An instance is given below::
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
The above example shows that the reference word is `EDISON`,
but it is predicted to `ADDISON` (a substitution error).
Another example is::
FOR THE FIRST DAY (SIR->*) I THINK
The reference word `SIR` is missing in the predicted
results (a deletion error).
results:
An iterable of tuples. The first element is the cut_id, the second is
the reference transcript and the third element is the predicted result.
enable_log:
If True, also print detailed WER to the console.
Otherwise, it is written only to the given file.
biasing_words:
All the words in the biasing list
Returns:
Return None.
"""
subs: Dict[Tuple[str, str], int] = defaultdict(int)
ins: Dict[str, int] = defaultdict(int)
dels: Dict[str, int] = defaultdict(int)
# `words` stores counts per word, as follows:
# corr, ref_sub, hyp_sub, ins, dels
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
num_corr = 0
ERR = "*"
if compute_CER:
for i, res in enumerate(results):
cut_id, ref, hyp = res
ref = list("".join(ref))
hyp = list("".join(hyp))
results[i] = (cut_id, ref, hyp)
for cut_id, ref, hyp in results:
ali = kaldialign.align(ref, hyp, ERR)
for ref_word, hyp_word in ali:
if ref_word == ERR: # INSERTION
ins[hyp_word] += 1
words[hyp_word][3] += 1
elif hyp_word == ERR: # DELETION
dels[ref_word] += 1
words[ref_word][4] += 1
elif hyp_word != ref_word: # SUBSTITUTION
subs[(ref_word, hyp_word)] += 1
words[ref_word][1] += 1
words[hyp_word][2] += 1
else:
words[ref_word][0] += 1
num_corr += 1
ref_len = sum([len(r) for _, r, _ in results])
sub_errs = sum(subs.values())
ins_errs = sum(ins.values())
del_errs = sum(dels.values())
tot_errs = sub_errs + ins_errs + del_errs
tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len)
if enable_log:
logging.info(
f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} "
f"[{tot_errs} / {ref_len}, {ins_errs} ins, "
f"{del_errs} del, {sub_errs} sub ]"
)
print(f"%WER = {tot_err_rate}", file=f)
print(
f"Errors: {ins_errs} insertions, {del_errs} deletions, "
f"{sub_errs} substitutions, over {ref_len} reference "
f"words ({num_corr} correct)",
file=f,
)
print(
"Search below for sections starting with PER-UTT DETAILS:, "
"SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:",
file=f,
)
print("", file=f)
print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f)
for cut_id, ref, hyp in results:
ali = kaldialign.align(ref, hyp, ERR)
combine_successive_errors = True
if combine_successive_errors:
ali = [[[x], [y]] for x, y in ali]
for i in range(len(ali) - 1):
if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]:
ali[i + 1][0] = ali[i][0] + ali[i + 1][0]
ali[i + 1][1] = ali[i][1] + ali[i + 1][1]
ali[i] = [[], []]
ali = [
[
list(filter(lambda a: a != ERR, x)),
list(filter(lambda a: a != ERR, y)),
]
for x, y in ali
]
ali = list(filter(lambda x: x != [[], []], ali))
ali = [
[
ERR if x == [] else " ".join(x),
ERR if y == [] else " ".join(y),
]
for x, y in ali
]
print(
f"{cut_id}:\t"
+ " ".join(
(
ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})"
for ref_word, hyp_word in ali
)
),
file=f,
)
print("", file=f)
print("SUBSTITUTIONS: count ref -> hyp", file=f)
for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True):
print(f"{count} {ref} -> {hyp}", file=f)
print("", file=f)
print("DELETIONS: count ref", file=f)
for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True):
print(f"{count} {ref}", file=f)
print("", file=f)
print("INSERTIONS: count hyp", file=f)
for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True):
print(f"{count} {hyp}", file=f)
unbiased_word_counts = 0
unbiased_word_errs = 0
biased_word_counts = 0
biased_word_errs = 0
print("", file=f)
print("PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f)
for _, word, counts in sorted(
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
):
(corr, ref_sub, hyp_sub, ins, dels) = counts
tot_errs = ref_sub + hyp_sub + ins + dels
# number of appearances of "word" in reference text
ref_count = (
corr + ref_sub + dels
) # correct + in ref but got substituted + deleted
# number of appearances of "word" in hyp text
hyp_count = corr + hyp_sub + ins
if biasing_words is not None:
if word in biasing_words:
biased_word_counts += ref_count
biased_word_errs += ins + dels + ref_sub
else:
unbiased_word_counts += ref_count
unbiased_word_errs += ins + dels + hyp_sub
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
if biasing_words is not None:
B_WER = "%.2f" % (100 * biased_word_errs / biased_word_counts)
U_WER = "%.2f" % (100 * unbiased_word_errs / unbiased_word_counts)
logging.info(f"Biased WER: {B_WER} [{biased_word_errs}/{biased_word_counts}] ")
logging.info(
f"Un-biased WER: {U_WER} [{unbiased_word_errs}/{unbiased_word_counts}]"
)
return float(tot_err_rate)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
manifest_dir = args.manifest_dir
subset = args.subset
top_k = args.top_k
get_rare_words(subset=subset, top_k=top_k)
add_context_list_to_manifest(
manifest_dir=manifest_dir,
subset=subset,
top_k=top_k,
)
check(
manifest_dir=manifest_dir,
subset=subset,
top_k=top_k,
)